scholarly journals Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for Green Walls

2019 ◽  
Vol 11 (3) ◽  
pp. 782 ◽  
Author(s):  
Yair Rivas-Sánchez ◽  
María Moreno-Pérez ◽  
José Roldán-Cañas

Green wall irrigation procedures are a particularly important and hard task, given that the quality of the green wall depends on them. There is currently a wide variety of irrigation programmers available, with a range of functions and prices, thereby replacing manual activities and making it easier to maintain green walls. This paper proposes the use of low-cost automated irrigation programmers via a freeware called Arduino. The system is based on air and substrate measurements to ensure optimal plant growth and high water-use efficiency. At certain thresholds, the irrigation system is activated. This not only makes irrigation more convenient but also helps to reduce energy consumption, increases irrigation efficiency and saves time. The data is then sent via Transmission Control Protocol using Internet of Things technology, in this case ThingSpeak. The platform compiles the data and presents them in simple graphical format, thus enabling real-time monitoring from wherever there is Internet access. Together with Arduino, the project incorporates the Raspberry pi system that operates like a database via Hypertext Transfer Protocol Wi-Fi received by a Structured Query Language (MySQL) server using Hypertext Preprocessor. These data are used for the subsequent analysis of green wall performance.

2015 ◽  
Vol 764-765 ◽  
pp. 640-643 ◽  
Author(s):  
Wu Jeng Li ◽  
Shu Chu Tung ◽  
Shih Miao Huang

This research designs a web-based supervisory control system based on Raspberry Pi. The system consists of one Raspberry Pi single-board computer and multiple data acquisition modules. The sensing and driving of the system are completed by reading/writing those data modules through RS485 interface by Modbus RTU protocol. Embedded database is used to store input/output data. Embedded web server provides interface for remote monitoring and control. The system was applied to environment control for computer room. It monitors air-conditioning systems, room temperature and humidity, fire alarm systems, uninterruptible power supply (UPS) systems, electricity supply systems and door access control systems. If something happens, it can drive buzzer, alarm, voice dialing, or air conditioning. The focus of this paper is using software to integrate hardware available in the market to form a low cost reliable supervisory control system.


Author(s):  
Seok Hyun Ga ◽  
Hyun-Jung Cha ◽  
Chan-Jong Kim

<p class="0abstract"><span lang="EN-US">We examine the major technical problems that students experience in authentic scientific inquiry and propose an Arduino-based device, adapting the Internet of Things technology, which is designed for the school science in order to solve those technical problems. Three major technical problems as follows: First, it is difficult to have a variety of measuring tools which may satisfy the needs of students. Second, it is hard to equip students with tools befitting the complex inquiry procedures which students develop on their own. Lastly, there exists a problem in which a particular group(s) of students take advantage of their competence in technology and have a monopoly in the process of data analysis. Physical computing and the IoT technology can provide solutions to these problems. Development boards like Arduino and Raspberry Pi can be purchased at affordable prices, which allows for measuring devices to be made at low cost by connecting sensors to those boards. Utilizing these development boards may also lead to the possibility to optimize measuring methods or procedures for inquiries of each student. By transmitting the measured data to the IoT Platform, students can have an equal access to the data and analyze it easily. We also investigate technologies used in IoT-applied physical computing including development boards, IoT platforms, and telecommunications technologies. Lastly, as an example of inquiry that adapts physical computing and IoT, we introduce the case of transferring data, measured by a temperature/humidity sensor connected to a development board, to the IoT Platform and visualizing them.</span></p><div id="dicLayer" style="display: none;"> </div><div id="dicRawData" style="display: none;"> </div><div id="dicLayerLoader"> </div>


2020 ◽  
Vol 9 (11) ◽  
pp. e98391110664
Author(s):  
Mateus Henrique Rodrigues Ribeiro ◽  
Lucas de Oliveira Estevam ◽  
Lúcio Rogério Júnior ◽  
Guilherme Henrique Alves ◽  
Fabíola Eugênio Arrabaca Moraes ◽  
...  

This article presents the development and construction of a didactic kit of practical experiences of electrical circuits, remotely controllable through the internet, from low cost resources and devices, and easy to implement. Developed with open source technologies, the practice module was built from a Raspberry Pi, and subdivided into four parts: a web application (developed in Html, Css, Javascript, PHP and MySQL) and a local application coded in Python and runs on the Raspberry; two electronic boards, one for controlling the resistors of a circuit and the other as a variable power supply for the circuit; a cabinet designed and built in MDF to accommodate all the physical components of the equipment; and a mixed electrical circuit for experiments, consisting of 9 resistors, 10 voltmeters and 3 ammeters. To access remotely, a Login system was built, generating greater security and a button interface that, when triggered, make requests to a server, recording the status of the button pressed in an SQL Database (Structured Query Language). Tests were carried out to check the integrity of the hardware and software devices of the didactic kit, considering that they did not present any flaws, allowing the equipment to be installed in a physics laboratory, connected to the internet and made available intermittently for use by high school students.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ATIQUR RAHMAN ◽  
ASHUTOSH UPADHYAYA ◽  
BP BHATT

The population of marginal farmers in India is bound to increase due to continued division of farm holdings. Characteristically, marginal farmers are having more family labours but the production and productivity of their land holdings is low. The foremost reason behind this is the erratic rainfall and lack of assure supplementary irrigation during long dry spells. This paper presents the scope and applicability of a diaphragm based treadle pump in Bihar where groundwater is abundant and available at shallow depths round the year. Therefore, this pump could be very useful for marginal farmers in improving production and productivity of their tiny piece of land, as it uses human power and can be operated by male and female of age group 32- 45 years and lifts water from a depth ranging from 0- 30 feet. The water saving technologies such as bucket kit drum kit etc. could be used with this pump to irrigate the crops with high water productivity.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1204
Author(s):  
Mengna Chen ◽  
Xuelong Chen ◽  
Caiyan Zhang ◽  
Baozheng Cui ◽  
Zewen Li ◽  
...  

One type of low-cost and eco-friendly organic‒inorganic superabsorbent composite (SAPC) was synthesized by free radical polymerization of acrylic acid (AA), starch (ST), sodium alginate (SA) and kaolin (KL) in aqueous solution. The structure and morphology of the SAPC were characterized by Fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The influence of different reaction conditions on water absorption of SAPC, i.e., SA and KL contents, AA neutralization degree (ND), potassium persulfate (KPS) and N, N′-methylenebisacrylamide (MBA) loading were systematically studied. Under the optimal synthesis conditions, very high water absorption of 1200 g/g was achieved. The swelling kinetic mechanism of SAPC was studied by pseudo-second order swelling kinetics model and Ritger‒Peppas model. The performances of SAPC under different environments were tested and results revealed that this new SAPC had excellent swelling capacity, high water retention, good salt tolerance in monovalent salt solution (NaCl solution) and good pH tolerance between 4 and 10.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Chunhua Feng ◽  
Buwen Cui ◽  
Haidong Ge ◽  
Yihong Huang ◽  
Wenyan Zhang ◽  
...  

Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.


Sign in / Sign up

Export Citation Format

Share Document