scholarly journals Impact of Climate Change on the Optimization of Mixture Design of Low-CO2 Concrete Containing Fly Ash and Slag

2019 ◽  
Vol 11 (12) ◽  
pp. 3394 ◽  
Author(s):  
Xiao-Yong Wang

Fly ash and slag have been widely used to produce low-CO2 concrete. However, previous studies have not paid enough attention to the lower carbonation resistance of fly-ash-and-slag-blended concrete and the aggravations of carbonation due to climate change. This study proposes a technique for the design of fly-ash-and-slag-blended concrete considering carbonation durability coupled with various climate change scenarios. First, CO2 emissions are evaluated from concrete mixtures. Concrete strength and carbonation depth are evaluated using efficiency factors of fly ash and slag. A genetic algorithm (GA) is used to find the optimal mixture with the lowest CO2 emissions considering the requirements of strength, carbonation durability, and workability. Second, we clarify the effect of cost on the mixture design of low-CO2 concrete. A genetic algorithm is also used to find the optimal mixture with the lowest cost. We found that the optimal mixture with the lowest cost is different from that with the lowest CO2 emissions. Third, by adding the additional constraint of cost, Pareto optimal mixtures are determined, which consider both lower CO2 emissions and lower material cost. The analysis results show that carbonation durability is the control factor of mixture design of fly ash-slag blended concrete. To mitigate the challenge of climate change, the binder content of blended concrete should be increased.

Author(s):  
Han-Seung Lee ◽  
Seung-Min Lim ◽  
Xiao-Yong Wang

Abstract High-volume slag (HVS) can reduce the CO2 emissions of concrete, but increase the carbonation depth of concrete. In particular, because of the effects of climate change, carbonation will accelerate. However, the uptake of CO2 as a result of carbonation can mitigate the harm of CO2 emissions. This study proposes an optimal mixture design method of low-CO2 HVS concrete considering climate change, carbonation, and CO2 uptake. Firstly, net CO2 emissions are calculated by subtracting the CO2 emitted by the material from the uptake of CO2 by carbonation. The strength and depth of carbonation are evaluated by a comprehensive model based on hydration. Secondly, a genetic algorithm (GA) is used to find the optimal mixture. The objective function of the GA is net CO2 emissions. The constraints of the GA include the strength, carbonation, workability, and range of concrete components. Thirdly, the results show that carbonation durability is a control factor of the mixture design of low-strength HVS concrete, while strength is a control factor of the mixture design of high-strength HVS concrete. After considering climate change, the threshold of strength control increases. With the increase of strength, the net CO2 emissions increase, while the CO2 uptake ratio decreases.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Author(s):  
Mark Cooper ◽  
Kai P. Voss-Fels ◽  
Carlos D. Messina ◽  
Tom Tang ◽  
Graeme L. Hammer

Abstract Key message Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Abstract Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is “How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?” Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype–Management (G–M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G–M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G–M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G–M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


Sign in / Sign up

Export Citation Format

Share Document