scholarly journals Response of Global Air Pollutant Emissions to Climate Change and Its Potential Effects on Human Life Expectancy Loss

2019 ◽  
Vol 11 (13) ◽  
pp. 3670 ◽  
Author(s):  
Qianwen Cheng ◽  
Manchun Li ◽  
Feixue Li ◽  
Haoqing Tang

Geographical environment and climate change are basic factors for spatial fluctuations in the global distribution of air pollutants. Against the background of global climate change, further investigation is needed on how meteorological characteristics and complex geographical environment variations can drive spatial air pollution variations. This study analyzed the response of air pollutant emissions to climate change and the potential effects of air pollutant emissions on human health by integrating the air pollutant emission simulation model (GAINS) with 3 versions and CMIP5. The mechanism by which meteorological characteristics and geographical matrices can drive air pollution based on monitoring data at the site-scale was also examined. We found the total global emission of major air pollutants increased 1.32 times during 1970–2010. Air pollutant emissions will increase 2.89% and 4.11% in China and developed countries when the scenario of only maximum technically feasible reductions is performed (V4a) during 2020–2050. However, it will decrease 19.33% and 6.78% respectively by taking the V5a climate scenario into consideration, and precipitation variation will contribute more to such change, especially in China. Locally, the air circulation mode that is dominated by local geographical matrices and meteorological characteristics jointly affect the dilution and diffusion of air pollutants. Therefore, natural conditions, such as climate changes, meteorological characteristics and topography, play an important role in spatial air pollutant emissions and fluctuations, and must be given more attention in the processes of air pollution control policy making.

2021 ◽  
Vol 13 (12) ◽  
pp. 6785
Author(s):  
Bing Wang ◽  
Yifan Wang ◽  
Yuqing Zhao

Since entering the industrialized era, China’s greenhouse gas emissions and air pollutant emissions have increased rapidly. China is the country with the most greenhouse gas emissions, and it is also facing serious local air pollution problems. China’s industrial sector is the largest contributor to CO2 and air pollutants. The resulting climate change and air pollution issues have caused China to face double pressures. This article uses the CO2 and comprehensive air pollutant emission data of China’s industrial sector as a starting point and uses econometric research methods to explore the synergy between China’s industrial carbon emission reduction and industrial comprehensive air pollutant emission reduction. The synergistic effect between industrial carbon emissions and industrial comprehensive air pollutant emissions has been quantified, and the transmission path of the synergistic effect has been explored. The empirical results show that there are benefits of synergistic governance between climate change and air pollution in China’s industrial sector. Every 1000 tons of carbon reduction in the industrial sector will result in 1 ton of comprehensive air pollutant reduction. The increase in R&D expenditure in the energy and power sector can significantly promote the reduction of air pollutants in the industrial sector. Increasing the intensity of environmental regulations is the main expansion path for synergy. However, in eastern, central, and western China, the synergy is not the same. Therefore, it is necessary to formulate regionally differentiated emission reduction policies. The research conclusions of this article can provide policy references for the coordinated governance of climate change and air pollution in China.


2013 ◽  
Vol 13 (3) ◽  
pp. 1377-1394 ◽  
Author(s):  
Y. Fang ◽  
V. Naik ◽  
L. W. Horowitz ◽  
D. L. Mauzerall

Abstract. Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3) to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8) million cardiopulmonary mortalities and 95 (95% CI, 44–144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129–592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also contribute to premature mortality associated with air pollution globally (by up to 5% and 15%, respectively). In some regions, the contribution of climate change and increased CH4 together are responsible for more than 20% of the respiratory mortality associated with O3 exposure. We find the interaction between climate change and atmospheric chemistry has influenced atmospheric composition and human mortality associated with industrial air pollution. Our study highlights the benefits to air quality and human health of CH4 mitigation as a component of future air pollution control policy.


2012 ◽  
Vol 12 (9) ◽  
pp. 22713-22756 ◽  
Author(s):  
Y. Fang ◽  
V. Naik ◽  
L. W. Horowitz ◽  
D. L. Mauzerall

Abstract. Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm} aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5(O3) to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv), and −0.02 ± 0.01 μg m−3 (+4.3 ± 0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0–2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129–592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3, respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air pollution globally up to 5% and 15%, respectively. In some regions, the contribution of climate change and increased CH4 together are responsible for more than 20% of the respiratory mortality associated with O3 exposure. We find the interaction between climate change and atmospheric chemistry has influenced atmospheric composition and human mortality associated with industrial air pollution. In addition to driving 13% of the total historical changes in surface O3 and 15% of the associated mortalities, CH4 is the dominant factor driving changes in atmospheric OH and H2O2 since preindustrial time. Our study highlights the benefits to air quality and human health of CH4 mitigation as a component of future air pollution control policy.


2017 ◽  
Vol 17 (14) ◽  
pp. 9223-9236 ◽  
Author(s):  
Wolfgang Knorr ◽  
Frank Dentener ◽  
Jean-François Lamarque ◽  
Leiwen Jiang ◽  
Almut Arneth

Abstract. Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.


1988 ◽  
Vol 6 (6) ◽  
pp. 447-464
Author(s):  
Jan Vernon

Over the last decade, environmental concerns have played an increasing role in energy decision making, from siting of new energy facilities to national policy changes, such as Sweden's decision to phase out nuclear power. Concern about atmospheric pollution from fossil fuel combustion, reflected in increasingly strict emission limits, has imposed additional costs and technical demands on coal-fired plants. Estimates from the Federal Republic of Germany, the USA and the OECD indicate that air pollution control can account for a third of the capital costs for a new coal-fired power plant. This article outlines the current status of regulations on air pollutant emissions from coal-fired plants, describes action being taken to meet regulations and its potential impacts on coal utilisation. The article focuses on sulphur dioxide and nitrogen oxides, which have seen major recent developments in regulations and control methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wen-jie Zou ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Ting Teng ◽  
Kuei Ying Huang

Finding the balance between economic development and environmental protection is a major problem for many countries around the world. Air pollution caused by economic growth has caused serious damage to humans’ living environment, and as improving energy and resource efficiencies is the first priority, many countries are targeting to move towards a sustainable environment and economic development. This study uses the modified dynamic SBM (slack-based measure) model to explore the economic efficiency and air pollutants emission efficiency in Taiwan’s counties and cities from 2012 to 2015 by taking labor, motor vehicles, and electricity consumption as inputs and average disposable income as output. Particulate matter (PM2.5), nitrogen oxide emissions (NO2), and sulfur oxide emissions (SO2) are undesirable outputs, whereas factory fixed assets are a carry-over variable, and the results show the following: (1) the regions with the best overall efficiency between 2012 and 2015 include Taipei City, Keelung City, Hsinchu City, Chiayi City, and Taitung County; (2) in counties and cities with poor overall efficiency performance, the average disposable income per household has no significant relationship with air pollutant emissions; (3) in counties and cities where overall efficiency is poor, the average efficiency of each household’s disposable income is small; and (4) except for the five counties and cities with the best overall performance, the three air pollutants in the other fourteen counties and cities are high. Overall, the air pollution of most areas needs improvement.


2013 ◽  
Vol 726-731 ◽  
pp. 2045-2050
Author(s):  
Min Hua Ye ◽  
Can Wang

Power sector is the major emitter in China of local air pollutants including SO2 and NOX, and CO2 and Hg with global environmental impacts. This study applied a bottom-up optimization model considering multi regional power grids in China to simulate how the local air pollution (LAP) control would shape the power generation mix before 2020 and estimate the mitigation potential of CO2 and Hg emission provided by LAP control. Results show that with LAP control targets, in 2020, 100% of coal-fired units need to be equipped with FGD or adopt in-furnace desulphurization for CFB; approximately 85% of coal-fired units should be equipped with SCR while the others retrofitted to be low NOX boilers. Compared to the scenario without environmental constraints, Hg emission decreases 46% while CO2 emission increases 0.64% in 2020 with LAP control targets. Control polices of local and global air pollutant emissions should be combined early in developing countries to obtain a cost-effective way for sustainable development.


2018 ◽  
Vol 3 (3) ◽  
pp. 152
Author(s):  
Dessy Gusnita ◽  
Dita Fatria

<p>Estimation of air pollutant emissions from non-oil and gas sources in eastern Indonesia, namely Sulawesi and Papua provinces during the period 2014 – 2016 was conducted. This paper intended to estimate the emission of three air pollutants namely NOx, SO<sub>2</sub> and CO<sub>2</sub>. The aim was to find out the amount of pollutant and greenhouse gas (<em>GHG</em>) emissions in the Sulawesi and Papua regions. The method used was the emission estimation method based on statistical data of Gross Regional Domestic Income (GRDP) in the Papua and Sulawesi regions. The results from estimation of pollutant emissions was then carried out for pollutant emissions mapping. The pollutant emission estimation showed the emission of air pollutants in Sulawesi region was higher than Papua. The mapping of emissions in Sulawesi were consisted of four provinces, namely north, central, south and southeast Sulawesi. The Papua region were consisted of Papua and west Papua provinces. The highest emission in Sulawesi region was south Sulawesi. The CO<sub>2</sub> emission in Sulawesi was increase about 23% with the detail value; 84.4 tons in 2014; 94.3 tons in 2015; and 103.7 tons in 2016. The emission of NOx during 2014 until 2016 are 0.53, 0.58 and 0.64 tons, there was an increasing in the emission of NOx around 21%. In addition, SO<sub>2</sub> emission of south Sulawesi are 0.42 tons in 2014, 0.47 tons in 2015 and 0.51 tons in 2016, increased about 21 % during the year 2014 - 2016. In the Papua region, the emission in Papua was higher than Papua Barat province. CO<sub>2</sub> emissions in Papua during 2014 -2016 were 112, 124.8 and 144.99 tons, it means the CO<sub>2</sub> was increased 29%. The emission of NOx during 2014-2016 were 0.70, 0.77 and 0.89 tons, increased around 27%. In addition, SO<sub>2</sub> emission was increase 26% with the detail value; 0.56 tons in 2014; 0.61 tons in 2015 and 0.71 tons in 2016.</p><p> </p><p><strong><em></em></strong><strong><em><br /></em></strong><em></em></p>


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1628
Author(s):  
Houli Zhang ◽  
Shibing You ◽  
Miao Zhang ◽  
Difei Liu ◽  
Xuyan Wang ◽  
...  

The impact of air pollution on human health is becoming increasingly severe, and economic losses are a significant impediment to economic and social development. This paper investigates the impact of air pollutants on the respiratory system and its action mechanism by using information on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air pollutants, and meteorological data, as well as relevant demographic and economic data in China. This paper describes the specific conditions of air pollutant concentrations and respiratory diseases, quantifies the degree of correlation between the two, and then provides a more comprehensive assessment of the economic losses using descriptive statistical methods, the generalized additive model (GAM), cost of illness approach (COI), and scenario analysis. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government tightens control of major air pollutants and meets the WHO-recommended criterion values, the annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03% of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air pollution control to mitigate the impact of air pollution on population health and the associated economic losses.


2017 ◽  
Vol 2 (12) ◽  
Author(s):  
Karolina Maduna ◽  
Vesna Tomašić

Abstract Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.


Sign in / Sign up

Export Citation Format

Share Document