Climate and Air Quality Co-Benefits of Local Air Pollution Control: The Case of China’s Power Sector

2013 ◽  
Vol 726-731 ◽  
pp. 2045-2050
Author(s):  
Min Hua Ye ◽  
Can Wang

Power sector is the major emitter in China of local air pollutants including SO2 and NOX, and CO2 and Hg with global environmental impacts. This study applied a bottom-up optimization model considering multi regional power grids in China to simulate how the local air pollution (LAP) control would shape the power generation mix before 2020 and estimate the mitigation potential of CO2 and Hg emission provided by LAP control. Results show that with LAP control targets, in 2020, 100% of coal-fired units need to be equipped with FGD or adopt in-furnace desulphurization for CFB; approximately 85% of coal-fired units should be equipped with SCR while the others retrofitted to be low NOX boilers. Compared to the scenario without environmental constraints, Hg emission decreases 46% while CO2 emission increases 0.64% in 2020 with LAP control targets. Control polices of local and global air pollutant emissions should be combined early in developing countries to obtain a cost-effective way for sustainable development.

1988 ◽  
Vol 6 (6) ◽  
pp. 447-464
Author(s):  
Jan Vernon

Over the last decade, environmental concerns have played an increasing role in energy decision making, from siting of new energy facilities to national policy changes, such as Sweden's decision to phase out nuclear power. Concern about atmospheric pollution from fossil fuel combustion, reflected in increasingly strict emission limits, has imposed additional costs and technical demands on coal-fired plants. Estimates from the Federal Republic of Germany, the USA and the OECD indicate that air pollution control can account for a third of the capital costs for a new coal-fired power plant. This article outlines the current status of regulations on air pollutant emissions from coal-fired plants, describes action being taken to meet regulations and its potential impacts on coal utilisation. The article focuses on sulphur dioxide and nitrogen oxides, which have seen major recent developments in regulations and control methods.


2019 ◽  
Vol 11 (13) ◽  
pp. 3670 ◽  
Author(s):  
Qianwen Cheng ◽  
Manchun Li ◽  
Feixue Li ◽  
Haoqing Tang

Geographical environment and climate change are basic factors for spatial fluctuations in the global distribution of air pollutants. Against the background of global climate change, further investigation is needed on how meteorological characteristics and complex geographical environment variations can drive spatial air pollution variations. This study analyzed the response of air pollutant emissions to climate change and the potential effects of air pollutant emissions on human health by integrating the air pollutant emission simulation model (GAINS) with 3 versions and CMIP5. The mechanism by which meteorological characteristics and geographical matrices can drive air pollution based on monitoring data at the site-scale was also examined. We found the total global emission of major air pollutants increased 1.32 times during 1970–2010. Air pollutant emissions will increase 2.89% and 4.11% in China and developed countries when the scenario of only maximum technically feasible reductions is performed (V4a) during 2020–2050. However, it will decrease 19.33% and 6.78% respectively by taking the V5a climate scenario into consideration, and precipitation variation will contribute more to such change, especially in China. Locally, the air circulation mode that is dominated by local geographical matrices and meteorological characteristics jointly affect the dilution and diffusion of air pollutants. Therefore, natural conditions, such as climate changes, meteorological characteristics and topography, play an important role in spatial air pollutant emissions and fluctuations, and must be given more attention in the processes of air pollution control policy making.


Author(s):  
Zhenhua Zhang ◽  
Guoxing Zhang ◽  
Shunfeng Song ◽  
Bin Su

High air pollutant emissions in China have become serious environmental issues threatening public health. While spatial heterogeneity plays an important role in environmental regulation in China, it is necessary to analyze the spatial heterogeneity influences of air pollution control policies and informal environmental regulation on air pollutant emissions in China. Based on the quantification of air pollution control policies, this paper incorporates the central government’s policy formulation and local government’s policy implementation into the intensity of air pollution control policy. This paper uses the panel data of China’s 30 provinces to examine the spatial impact of air pollution control policy and informal environmental regulation on air pollutant emissions. The results show that (a) air pollutant emissions represented by soot and dust emission intensity has a significant positive spatial spillover effect; (b) air pollution control policy and informal environmental regulation play significant inhibitory roles in air pollutant emissions; (c) informal environmental regulation has a negative moderating effect on the negative relationship between air pollution control policy and air pollutant emissions. Other implications for environmental management have also been discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


2018 ◽  
Vol 1 (6) ◽  
pp. 247-257
Author(s):  
Bang Quoc Ho ◽  
Tam Thoai Nguyen ◽  
Khue Hoang Ngoc Vu

Can Tho City is one the 5th largest city in Vietnam, with hight rate of economic growth and densely populated with 1,251,809 people, butsling traffic activities with 566,593 motobikes and 15,105 cars and hundreds of factories. The air in Can Tho city is polluted by dust and ozone. However, Can Tho city currently does not have a study on the simulation air pollution spread, therefore we do not have an overview on the status of air pollution in order to do not have solutions to limit the increase of pollution status of the city. The purpose of this study is to collect air pollutant emissions from other study. After that, TAPOM model is used to simulate the effects of ozone on the surrounding areas and study the ozone regime in Cantho city. The study results showed that the highest ozone concentration for an hour everage is 196 μg/m3. Compare with national technical regulation about ambient air QCVN 5:2013/BTNMT, ozone concentration is approximately at the allowable limit. The study of ozone regime had identified that VOC sensitive areas are Ninh Kieu district and a part in the south of Binh Thuy district, and NOx sensitive areas are the rested areas of Cantho city. The main cause contributing to increased VOC emission in the central area of the city is motorcycles, NOx emissions in the remaining areas of Cantho city are from the rice production factories. Proposals to protect the air quality in Cantho city are suggested.


2019 ◽  
Vol 4 (11) ◽  
pp. 5-10
Author(s):  
I. Ubong ◽  
N. Harry-Ngei ◽  
P. N. Ede

This review paper focuses on the description, uses and emission removal functions of a solvent with respect to air pollution control of the flue gases in a combustion chamber exhaust waste stream. The physical characteristics of the solvent required for improved and optimal performance of the absorption system where discussed. The factors affecting performance of the solvent with reference to parametric changes in operations as well as cost consideration schemes required to select the most appropriate solvent for increased performance were also ex-rayed. The choice of a solvent that is cost effective and readily available was recommended in the study. 


2017 ◽  
Vol 17 (14) ◽  
pp. 9223-9236 ◽  
Author(s):  
Wolfgang Knorr ◽  
Frank Dentener ◽  
Jean-François Lamarque ◽  
Leiwen Jiang ◽  
Almut Arneth

Abstract. Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document