scholarly journals Analyzing the Impact of Different Transport Governance Strategies on Climate Change

2019 ◽  
Vol 12 (1) ◽  
pp. 200 ◽  
Author(s):  
Shengrun Zhang ◽  
Frank Witlox

The transport industry is one of the few sectors in which emissions continue to grow, contributing 26% to the global CO2 emissions. Transport agencies everywhere in the world are focusing on mitigation strategies to reduce greenhouse gas emissions. Policy-makers are under pressure to tackle the issue of climate change and approach sustainable transport by promoting more sustainable practices and altering behavior. This paper attempts to explore the impact of transport on climate change through the lens of governance by establishing a systematic review framework. The results showed that developing nations should be influential in managing their public transport agencies to achieve economic transformation. They require a functional, reliable, and effective transport system and these can only be derived by properly formulated and implemented policies with the aid of all relevant private, academic, and government bodies working together. This study concluded that developing nations need to manage their pricing methods, using them to facilitate transport systems that are unlikely to affect the climate. To this end, transport policy and governance need to be reviewed to take into account climate change and natural disaster concerns. Additionally, guidelines and strategies should be proposed for every actor involved, i.e., transport community, top-level leaders, and all governmental levels and private sectors.

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 184
Author(s):  
Javier Cárcel-Carrasco ◽  
Manuel Pascual-Guillamón ◽  
Fidel Salas-Vicente

Today, the design and remodeling of urban environments is being sought in order to achieve green, healthy, and sustainable cities. The effect of air pollution in cities due to vehicle combustion gases is an important part of the problem. Due to the indirect effect caused by the Covid-19 pandemic, political powers in Europe have imposed confinement measures for citizens by imposing movement restrictions in large cities. This indirect measure has given us a laboratory to show how the reduction in vehicle circulation affects in a short time the levels of air pollution in cities. Therefore, this article analyzes the effect in different European cities such as Milan, Prague, Madrid, Paris, and London. These cities have been chosen due to their large amount of daily road traffic that generates high levels of pollution; therefore, it can clearly show the fall in these pollutants in the air in the analyzed period. The results shown through this study indicate that the reduction in combustion vehicles greatly affects the levels of pollution in different cities. In these periods of confinement, there was an improvement in air quality where pollutant values dropped to 80% compared to the previous year. This should serve to raise awareness among citizens and political powers to adopt measures that induce sustainable transport systems.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


Author(s):  
Hung Ho ◽  
Sawaid Abbas ◽  
Jinxin Yang ◽  
Rui Zhu ◽  
Man Wong

Climate variability has been documented as being key to influencing human wellbeing across cities as it is linked to mortality and illness due to changes in the perceived weather cycle. Many studies have investigated the impact of summer temperature on human health and have proposed mitigation strategies for summer heat waves. However, sub-tropical cities are still experiencing winter temperature variations. Increasing winter perceived temperature through the decades may soon affect city wellbeing, due to a larger temperature change between normal winter days and extreme cold events, which may cause higher health risk due to lack of adaptation and self-preparedness. Therefore, winter perceived temperature should also be considered and integrated in urban sustainable planning. This study has integrated the increasing winter perceived temperature as a factor for developing spatiotemporal protocols for mitigating the adverse impact of climate change. Land surface temperature (LST) derived from satellite images and building data extracted from aerial photographs were used to simulate the adjusted wind chill equivalent temperature (AWCET) particularly for sub-tropical scenarios between 1990 and 2010 of the Kowloon Peninsula, Hong Kong. Compared with perceived temperature based on the representative station located at the headquarters of the Hong Kong Observatory, the temperature of half the study area in the Kowloon Peninsula has raised by 1.5 °C. The areas with less green space and less public open space in 2010 show higher relative temperatures. Socioeconomically deprived areas (e.g., areas with lower median monthly income) may suffer more from this scenario, but not all types of socioeconomic disparities are associated with poor sustainable planning. Based on our results and the “no-one left behind” guideline from the United Nations, climate change mitigation should be conducted by targeting socioeconomic neighborhoods more than just aging communities.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


2009 ◽  
Vol 27 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Sara J. Wilkinson ◽  
Kimberley James ◽  
Richard Reed

PurposeThis paper seeks to establish the rationale for existing office building adaptation within Melbourne, Australia, as the city strives to become carbon neutral by 2020. The problems faced by policy makers to determine which buildings have the optimum adaptation potential are to be identified and discussed.Design/methodology/approachThis research adopts the approach of creating a database of all the buildings in the Melbourne CBD including details of physical, social, economic and technological attributes. This approach will determine whether relationships exist between attributes and the frequency of building adaptation or whether triggers to adaptation can be determined.FindingsThis research provided evidence that a much faster rate of office building adaptation is necessary to meet the targets already set for carbon neutrality. The findings demonstrate that a retrospective comprehensive examination of previous adaptation in the CBD is a unique and original approach to determining the building characteristics associated with adaptation and whether triggers can be identified based on previous practices. The implication is that a decision‐making tool should be developed to allow policy makers to target sectors of the office building stock to deliver carbon neutrality within the 2020 timeframe.Practical implicationsDrastic reductions in greenhouse gas emissions are required to mitigate global warming and climate change and all stakeholders should be looking at ways of reducing emissions from existing stock.Originality/valueThis paper adds to the existing body of knowledge by raising awareness of the way in which the adaptation of large amounts of existing stock can be fast tracked to mitigate the impact of climate change and warming associated with the built environment, and in addition it establishes a framework for a decision‐making tool for policy makers.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1794
Author(s):  
Rodney J. Feliciano ◽  
Géraldine Boué ◽  
Jeanne-Marie Membré

Climate change is expected to affect many different sectors across the food supply chain. The current review paper presents an overview of the effects of climate change on the microbial safety of the dairy supply chain and suggest potential mitigation strategies to limit the impact. Raw milk, the common raw material of dairy products, is vulnerable to climate change, influenced by changes in average temperature and amount of precipitation. This would induce changes in the microbial profile and heat stress in lactating cows, increasing susceptibility to microbial infection and higher levels of microbial contamination. Moreover, climate change affects the entire dairy supply chain and necessitates adaptation of all the current food safety management programs. In particular, the review of current prerequisite programs might be needed as well as revisiting the current microbial specifications of the receiving dairy products and the introduction of new pretreatments with stringent processing regimes. The effects on microbial changes during distribution and consumer handling also would need to be quantified through the use of predictive models. The development of Quantitative Microbial Risk Assessment (QMRA) models, considering the whole farm-to-fork chain to evaluate risk mitigation strategies, will be a key step to prioritize actions towards a climate change-resilient dairy industry.


2016 ◽  
Vol 14 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Abdullah Alzahrani ◽  
Halim Boussabaine ◽  
Ali Nasser Alzaed

Purpose – The purpose of this paper is to report results from a survey on emerging climate changes and the risks to the operation of building assets in the UK. The property sector is facing major challenges as a result of projected climate change scenarios. Predictions concerning future climate change and the subsequent impact on building operations are still subject to a high degree of uncertainty. However, it is important that building stockholders consider a range of possible future risks that may influence the operation of their assets. Design/methodology/approach – The literature review and questionnaire are used to elicit and assess the likelihood of occurrence of climate change risks impacting building operations. The survey was carried out among building stockowners and professionals in the UK. Statistical methods were used to rank and compare the findings. Findings – The majority of the respondents strongly agreed that the list of risks that were elicited from the literature will have an impact on their building assets within a 0-5 years’ time horizon. It was found that the professionals were most concerned about higher energy prices and an increase in operation costs in general; they were least concerned about an electricity blackout. Research limitations/implications – This paper is limited to the UK, and regional variations are not explored. Nevertheless, the buildings’ operation risk study provides a starting point for further investigations into the emerging risks from climate change, and their impact on the operation of building stock. Future work could investigate direct mapping between climate risks and the financial value of properties. Originality/value – Findings of this paper can help professionals and building stockowners improve their understanding of climate change risks and the impact on their assets. This paper could also help these individuals to formulate appropriate adaptation and mitigation strategies.


2020 ◽  
Author(s):  
Jaromir Krzyszczak ◽  
Piotr Baranowski ◽  
Monika Zubik

<p>Climate change uncertainty largely complicates adaptation and risk management evaluation at the regional level, therefore new approaches for managing this uncertainty are still being developed. In this study three crop models (DNDC, WOFOST and DSSAT) were used to explore the utility of impact response surfaces (IRS) and adaptation response surfaces (ARS) methodologies (Pirttioja et al., 2015; Ruiz-Ramos et al., 2018).</p><p>To build IRS, the sensitivity of modelled yield to systematic increments of changes in temperature (-1 to +6°C) and precipitation (-30 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather. Four levels of CO2 (360, 447, 522 and 601 ppm) representing future conditions until 2070 were considered. In turn, to build ARS, adaptation options were: shortening or extending the crop cycle of the standard cultivar, sowing earlier or later than the standard date and additional irrigation. Preliminary data indicate that yields are declining with higher temperatures and decreased precipitation. Yield is more sensitive to changes in baseline temperature values and much less sensitive to changes in baseline precipitation values for arable fields in Finland, while for arable fields in Germany, ARS indicates yield sensitivity at a similar level for both variables. Also, our data suggests that some adaptation options provides increase of the yield up to 1500 kg/ha, which suggest that ARSs may be valuable tool for planning an effective adaptation treatments. This research shows how to analyze and assess the impact of adaptation strategies in the context of the high level of regional uncertainty in relation to future climate conditions. Developed methodology can be applied to other climatic zones to help in planning adaptation and mitigation strategies.</p><p>This study has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the project: MSINiN, contract number: BIOSTRATEG3/343547/8/NCBR/2017</p>


Sign in / Sign up

Export Citation Format

Share Document