scholarly journals Eco-Physiological Responses of Black Chokeberries as Affected by Applications of Oil Cake

2020 ◽  
Vol 12 (18) ◽  
pp. 7601
Author(s):  
Hyun-Sug Choi

This study was carried out to examine the optimum amount of oil cake necessary for the desired nutritional status of “Nero” black chokeberry (Aronia melanocarpa (Michx.) Elliot) in an experimental field plot between the years 2018 and 2019. The treatments included 0% (0.0 kg/ha), 25% (4.4 kg/ha), 50% (8.8 kg/ha), 75% (13.1 kg/ha), and 100% (17.5 kg/ha) of a recommended amount of oil cake. The pH in the plots with 8.8, 13.1, and 17.5 kg per ha applied ranged between 7.0 and 7.3, and these values were lower than the values observed on the plots with 0.0 and 4.4 kg per ha applied at the end of July in the years 2018 and 2019, with the concentrations of soil NO3-N and NH4-N remaining low in the off-season. The foliar concentration of total-nitrogen (T-N) was higher for the plants treated with all the oil cake treatments in 2018 and with the oil cake of 17.5 kg/ha in 2019 compared to that of 0.0 kg/ha. The foliar soil plant analysis development values for June and August increased on the bushes treated with 13.1 and 17.5 kg per ha in both the years of 2018 and 2019. The cane diameter, canopy width, and total dry weight were significantly increased by bushes treated with 8.8, 13.1, and 17.5 kg per ha in both years. The fruit yield, harvest index, and percentage of T-N partitioning into fruit were maximized by the treatment with 13.1 kg per ha. An amount of 75% of the recommend application for young black chokeberry may be the prominent application rate in terms of maximized fruit productivity while balancing with the demands of vegetative growth in order to reset the recommended amount of fertilizer.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 224 ◽  
Author(s):  
Lan Huang ◽  
Mengmeng Gu ◽  
Ping Yu ◽  
Chunling Zhou ◽  
Xiuli Liu

The suitability of biochar (BC) as a container substrate depends on the BC mix ratio and plant species. Mixes with mixed hardwood BC (20%, 40%, 60%, and 80%, by volume) and vermicompost (VC; 5%, 10%, 15%, and 20%, by volume) were evaluated as container substrates on basil (Ocimum basilicum L.) and tomato (Solanum lycopersicum L. ‘Roma’) plants compared to a commercial peat-based substrate (CS). The CS made up the rest of the volume when BC and VC did not add up to 100%. The total porosity of all mixes with BC, VC, and CS (BC:VC:CS mixes) was similar to the control. Mixes with 80% BC had lower container capacity than the control. At 9 weeks after transplanting, the leachate pH of all the BC:VC:CS mixes was higher than that of the control, except for mixes of 20%BC and 5%VC with the rest (75%) being CS (20BC:5VC:75CS) and 20BC:10VC:70CS with tomato plants. The soil plant analysis development (SPAD) readings in BC:VC:CS mixes were similar to or higher than the control except for tomato plants in 80BC:5VC:15CS, 80BC:15VC:5CS, and 80BC:20VC:0CS mixes. Plants in BC:VC:CS mixes had similar growth indexes and total dry weight with respect to those in 100% CS, with the root DW of basil plants in 60BC:15VC:25CS being the highest among all treatments. Therefore, the BC (20%, 40%, 60%, or 80%, by volume) and VC (5%, 10%, 15%, or 20%, by volume) mixes had the potential to replace CS for container-grown plants, with the estimate wholesale price for 80BC:5VC:15CS was only 61.6% that of the control.


2020 ◽  
Vol 1 (1) ◽  
pp. 37-41
Author(s):  
Kalika Prasad Upadhyay ◽  
Janaki Datta Neupane

A split-plot experiment was conducted to determine the response of potato to application rate of biochar (0, 2, 4 and 6 t/ha , main plots) and number of irrigations (once, twice and thrice a month, sub-plots) in 3 replications as a pot trial in a screen house at Khumaltar during winter season of 2018 and 2019. Biochar was produced from Lantana camara by semi-pyrolysed technique in a Kon Tiki drum. Plastic pots with 26 cm of diameter were used to meet the 25 cm plant spacing of potato recommended in Nepal. The early maturing (90 days) released variety ‘Desiree’ was used for the trial. Observations were recorded on plant and tuber attributes. The results revealed that the influence of biochar rates was positive over zero biochar on plant height, root fresh weight, root dry weight, stem fresh weight and tuber dry weight. The effect of biochar @ 2/ha had similar effects to the rates of 4 t/ha and 6 t/ha rates. Irrigation treatments were significantly different for plant height, number of tubers per plant, root fresh weight, stem and leaf fresh weight, tuber fresh weight, root dry weight and tuber dry weight. Among the irrigation schedules, irrigating twice and thrice a month had similar effects but they were different from one irrigation. Interactions of biochar @ 2 t/ha with one, two or three irrigations were superior to the interactions of biochar @ 0 t/ha with one and two irrigations for tuber dry weight and total dry weight.


1969 ◽  
Vol 60 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Charles S. Nicoll

ABSTRACT The response of the pigeon crop-sac to systemically acting prolactin (injected subcutaneously) was evaluated by measuring the wet weight of the responsive lateral lobes of the organ and by determining the dry weight of a 4 cm diameter disc of mucosal epithelium taken from one hemicrop. Of several different injection schedules tested, administration of prolactin in four daily injections was found to yield optimal responses. When compared with a graded series of prolactin doses, measurement of the mucosal dry weight proved to be a better method of response quantification than determination of the crop-sac wet weight with respect to both assay sensitivity and precision. The submucosal tissue of the crop-sac was estimated to constitute about 64 % of the total dry weight of the unstimulated organ and it was found to be relatively unresponsive to prolactin stimulation in comparison with the mucosa. The lipid content of the mucosal epithelium was determined using unstimulated crop-sacs or tissues which showed varying degrees of prolactin-induced proliferation. The fat content of the mucosal epithelial cells increased only slightly more rapidly than the dry weight or the defatted dry weight of the mucosa. Suggestions are made for the further improvement of the systemic crop-sac assay for prolactin.


2020 ◽  
Vol 51 (4) ◽  
pp. 1231-1238
Author(s):  
Zeki & Ridha

This study was aimed to investigate the ability of N.oleander to remove Cadmium (Cd) from wastewater. A prolonged toxicity test was performed in a single exposure and run for 65 days with various concentrations of Cd. Plants were grown in sand medium and irrigated with simulated wastewater contaminated with Cd, using different concentrations (0, 10, 25, 50, 75 mg/L), which were chosen based on previous preliminary test. The results of physical observation of the plants didn’t show any withering symptoms. The Cd concentration in plants increased, while in water decreased. The results of plant analysis showed that Cd concentration in plant shoots (stems and leaves) was higher than that in roots for almost all exposure doses along the test duration. The concentration of Cd in water decreased significantly from the first week of the test and become (0 mg/l) on day-35 for 10 and 25 mg/l exposure doses, while exceeded the permissible limits for 50 and 75 mg/l exposure doses and were 0.14 and 0.91 mg/l, respectively. Wet weight and dry weight of Oleander decreased with increasing Cd concentration level except for 10 mg/l exposure dose where the plant wet weight and dry weight increased at the end of the test. Bioaccumulation factor (BAF) and Translocation Factor (TF) was found to be greater than 1, indicating that Oleander is a successful hyperaccumulator for Cd.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1151
Author(s):  
Sadam Hussain ◽  
Saddam Hussain ◽  
Zubair Aslam ◽  
Muhammad Rafiq ◽  
Adeel Abbas ◽  
...  

Dry direct-seeded rice has been shown to save irrigation water and labor. Nonetheless, irrigation management in dry direct-seeded rice has received very little attention. Here, we examined the potential of different irrigation regimes: aerobic rice (AR), alternate wetting and drying (AWD) and continuous flooding (CF) in dry direct-seeded rice cultivation on two rice cultivars (Pride-1 (hybrid indica) and NB-1 (inbred indica)). Growth, yield attributes, grain yield, total water input, water productivity and benefit cost ratio were measured. Our results showed that AR saved 11.22 and 28.40%, and 5.72 and 32.98% water compared with AWD and CF during 2018 and 2020, respectively. There was a significant difference in grain yield among treatments and cultivars. AWD and CF produced statistically same total dry weight and grain yield, while AR reduced the total dry weight by 31.34% and 38.04% and grain yield by 34.82% and 38.16% in comparison to AWD and CF, respectively, across the years. Except for 1000-grain weight and harvest index in AWD and CF, further differences in total dry weight and grain yield among irrigation treatments were primarily correlated with variations in yield attributes. Among the cultivars, hybrid rice performed better than inbred rice. Over the two-year period, hybrid rice increased total dry weight, grain yield, and water productivity by 9.28%, 13.05%, and 14.28%, respectively, as compared to inbred rice. Regarding water productivity (WP), the maximum percentage (40.90 and 26.53%) was recorded for AWD compared to AR and CF. Among cultivars, more water productivity (14.28%) was calculated for hybrid rice than inbred one. Chlorophyll and carotenoid contents, leaf area index and crop growth rate contributed to higher grain yield of hybrid rice under AWD and CF. In contrast to WP, the maximum benefit cost ratio was estimated to be higher for CF than that of AR and AWD. For the cultivars, the maximum value (2.26 in 2018 and 2.32 in 2020) was calculated for hybrid rice compared with the inbred one. In conclusion, these results suggests that AWD with maximum WP and CF with maximum BCR could be more efficient approaches than AR. Under CF, hybrid rice cultivars with higher yield and yield-related attributes, WP and BCR performed better.


2020 ◽  
Vol 21 (24) ◽  
pp. 9762
Author(s):  
Soyol Dashbaldan ◽  
Cezary Pączkowski ◽  
Anna Szakiel

The process of fruit ripening involves many chemical changes occurring not only in the mesocarp but also in the epicarp, including changes in the triterpenoid content of fruit cuticular waxes that can modify the susceptibility to pathogens and mechanical properties of the fruit surface. The aim of the study was the determination of the ripening-related changes in the triterpenoid content of fruit cuticular waxes of three plant species from the Rosaceae family, including rugosa rose (Rosa rugosa), black chokeberry (Aronia melanocarpa var. “Galicjanka”) and apple (Malus domestica var. “Antonovka”). The triterpenoid and steroid content in chloroform-soluble cuticular waxes was determined by a GC-MS/FID method at four different phenological stages. The profile of identified compounds was rather similar in selected fruit samples with triterpenoids with ursane-, oleanane- and lupane-type carbon skeletons, prevalence of ursolic acid and the composition of steroids. Increasing accumulation of triterpenoids and steroids, as well as the progressive enrichment of the composition of these compounds in cuticular wax during fruit development, was observed. The changes in triterpenoid content resulted from modifications of metabolic pathways, particularly hydroxylation and esterification, that can alter interactions with complementary functional groups of aliphatic constituents and lead to important changes in fruit surface quality.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


1972 ◽  
Vol 50 (11) ◽  
pp. 2097-2102 ◽  
Author(s):  
R. Hall ◽  
H. Ly

The development of microsclerotia of Verticillium dahliae from a few swollen hyaline cells on a hypha to a multicellular, pigmented "mature" structure is described and illustrated. A method for quantitatively estimating the amount of pigmented microsclerotial material in pure cultures was developed to study quantitative relations between mycelial growth and production of microsclerotial material in media containing different concentrations of glucose. At low glucose concentrations (0.6 to 10 mg/ml) microsclerotial material continued to increase after total dry weight of the cultures had reached a maximum, suggesting conversion of hyaline to pigmented material. At high glucose concentrations (20 to 60 mg/ml) the patterns of increase in total dry weight, microsclerotial material, and hyaline material were similar over a 4-week incubation period. Maximum production of both pigmented and hyaline materials occurred at a glucose concentration of 30 mg/ml (carbon/nitrogen ratio of 50/1).


Sign in / Sign up

Export Citation Format

Share Document