scholarly journals Sustainability Potential Evaluation of Concrete with Steel Slag Aggregates by the LCA Method

2020 ◽  
Vol 12 (23) ◽  
pp. 9873
Author(s):  
Vojtěch Václavík ◽  
Marcela Ondová ◽  
Tomáš Dvorský ◽  
Adriana Eštoková ◽  
Martina Fabiánová ◽  
...  

Sustainability in the construction industry refers to all resource-efficient and environmentally responsible processes throughout the life cycle of a structure. Green buildings may incorporate reused, recycled, or recovered materials in their construction. Concrete is as an important building material. Due to the implementation of by-products and waste from various industries into its structure, concrete represents a significant sustainable material. Steel slag has great potential for its reuse in concrete production. Despite its volume changes over time, steel slag can be applied in concrete as a cement replacement (normally) or as a substitute for natural aggregates (rarely). This paper focused on an investigation of concrete with steel slag as a substitute of natural gravel aggregate. Testing physical and mechanical properties of nontraditional concrete with steel slag as a substitute for natural aggregates of 4/8 mm and 8/16 mm fractions confirmed the possibility of using slag as a partial replacement of natural aggregate. Several samples of concrete with steel slag achieved even better mechanical parameters (e.g., compressive strength, frost resistance) than samples with natural aggregate. Moreover, a life cycle assessment (LCA) was performed within the system boundaries cradle-to-gate. The LCA results showed that replacements of natural aggregates significantly affected the utilization rate of nonrenewable raw materials and reduced the overall negative impacts of concrete on the environment up to 7%. The sustainability indicators (SUI), which considered the LCA data together with the technical parameters of concrete, were set to evaluate sustainability of the analyzed concretes. Based on the SUI results, replacing only one fraction of natural gravel aggregate in concrete was a more sustainable solution than replacing both fractions at once. These results confirmed the benefits of using waste to produce sustainable materials in construction industry.

Author(s):  
Samuel Cameli Fernandes ◽  
Laerte Melo Barros ◽  
Rodrigo Paz Barros ◽  
Pedro Felix Liotto ◽  
David Barbosa de Alencar

Waste reuse is considered an excellent alternative for sustainable development. For the World Commission on Environment and Development in Our Common Future, sustainability is "one that meets the needs of the present without compromising the ability of future generations to meet their needs." One way to provide a sustainable solution for glass would be the reuse of glass waste in the production of concrete. Glass residues when suitably crushed and sieved, to assume appropriate granulometry, may exhibit characteristics similar to natural aggregates. The use of glass waste when used in concrete manufacturing reduces production costs. The main objective of the research was to replace, as much as possible, in percentage, the quantity of sand and gravel aggregates by glass waste with the same granulometry, as a way to reduce costs, reduce the use of raw materials and reduce the quantity of wastes that were inadequately disposed of in landfills. Samples of glass waste were collected in the construction industry itself, in works and glassware companies that work with cutting and delivery of the product. Comparisons were made between concretes produced with natural and concrete aggregates produced with the substitution of 20%, 30%, 40% and 50% of the fine aggregate, all of which glass was used as a substitute. The comparative analyzes were the mechanical properties of compression strength and diametral compression traction at 7, 14, 21, 28 and 90 days.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 439
Author(s):  
Sandra Filipović ◽  
Olivera Đokić ◽  
Aleksandar Radević ◽  
Dimitrije Zakić

Copper slag, a by-product of the pyrometallurgical process used for obtaining copper from copper ore in Bor, Serbia, contains mainly silicon, iron, calcium, and aluminium oxides. Due to such properties, it is disposed of in landfills. Despite the favourable technical properties copper slag aggregates possess, such as low-water absorption (WA24 0.6%), low resistance to fragmentation (LA 10%), and low resistance to wear (MDE 4%), its use in the construction industry is still limited. The results of testing the technical properties of copper slag aggregates (CSAs) as a potential replacement for natural river aggregate (RA) are presented in this paper. The experiments included tests on three concrete mixtures with partial replacement of coarse natural aggregate with copper slag. The replacement of RA particle sizes of 8/16 mm and 16/31.5 mm with CSA in the amount of 20% + 50% and 50% + 50% resulted in an increase in the compressive strength of 12.4% and 10.5%, respectively. The increase of CSA content led to a decrease in water penetration resistance and salt-frost resistance of concrete, whereas the resistance to chloride ion penetration did not change significantly.


2021 ◽  
Vol 898 ◽  
pp. 35-41
Author(s):  
Jakub Hodul ◽  
Tomáš Žlebek ◽  
Lenka Mészárosová ◽  
Aleš Jakubík ◽  
Rostislav Drochytka

The polymeric adhesives for the installation of basalt elements on a metal base are designed primarily for environments with increased chemical and mechanical stress. They are composed of polymer resins (epoxy, polyurethane) as binders, as well as organic additives and mineral admixtures that mainly fulfill the function of filler. In all sectors of today's construction industry, maximum efficiency in the production of materials is required for sustainability purposes, which, however, must never be at the expense of the quality or the required performance. Due to these requirements, great emphasis is placed on the maximum use of secondary raw materials. Talc is used as the primary filler for polymer adhesives. Sawdust, tire rubber, and fly ash are used as secondary raw materials. The use of these in building supplies can positively affect some physical and mechanical properties of polymeric adhesives. Also, the use of secondary raw materials has the above-mentioned ecological benefit. Basic properties, such as bulk density and adhesion to both metallic and basalt elements, were monitored. The details of the cohesion of the adhesive with the bonded material, as well as the distribution of secondary raw materials in the polymer matrix, were assessed microscopically.


2020 ◽  
pp. 0734242X2094537 ◽  
Author(s):  
Gopinath Athira ◽  
Abdulsalam Bahurudeen ◽  
Vijaya Sukumar Vishnu

As stated in the European Commission’s waste framework directive, the geographic proximity of wastes to the potential recovery/disposal site is of paramount importance in attaining an effective resource recycling paradigm. The global interest in achieving an end-of-waste scenario encourages the recovery of useful products/secondary raw materials from locally available waste materials. Sugarcane bagasse ash is an abundantly available waste (44,200 tonnes day–1) from sugar plants in India which has the potential to be used as a partial replacement to cement in ready-mix concrete plants. Although pozzolanic performance of sugarcane bagasse ash and its ability in reducing the carbon emissions associated with concrete production have been reported in earlier research studies, its use in concrete is hindered due to the lack of availability and accessibility data. In this study, the geographical distribution of sugar plants and the available quantity of sugarcane bagasse ash in India have been determined. In addition, a detailed network analysis using a geographic information system was conducted to quantify the geographic proximity of bagasse ash, fly ash and slag sources to ready-mix concrete plants. The study results indicate that for most of the ready-mix concrete plants in India, the probability of having a bagasse ash source in proximity is higher than the probability of encountering slag/fly ash sources.


2010 ◽  
Vol 163-167 ◽  
pp. 1651-1654 ◽  
Author(s):  
Jin Bang Wang ◽  
Zong Hui Zhou

Several series of concrete aggregates with different content of steel slag, blast furnace slag, coal gangue and fly ash were prepared. The reasonable ratio of raw materials and process parameters to prepare the aggregates were determined by measuring the water absorption, crush indicators and apparent density of the aggregates. The mineral composition and morphology of the aggregates were analyzed by XRD, SEM and EDS. The results showed the aggregate with about 30% steel slag, 50% slag, 20% gangue, and calcined at 1300°C for 90 minutes had the best performance. The water absorption of the aggregate is about 1.55% which is lower than that of the natural aggregates (about 2.2% on average). Both the crushing index (about 11.39%) and the apparent density (2672 kg/m3) of the aggregate meet the requirements of national standards.


2012 ◽  
Vol 512-515 ◽  
pp. 3003-3006
Author(s):  
Rostislav Drochytka ◽  
Vit Cerný ◽  
Karel Kulísek

Burning high-quality anthracite coal produces ash with a high content of unburned residues, which in many cases permanently exceeds 20%. These ashes usually contain high levels of amorphous phase providing the pozzolanic activity, this making them particularly useful if potentially applied in the construction industry. Such potential of effective treatment necessitates reducing the content of unburned residues, the best level here being less than 4% w/w. This paper deals with the results of testing heat treatment of fly ashes particularly using the resources of eastern Slovakia. Tests have shown that tested process of heat treatment can safely reduce the content of unburned residues in fly ash whilst maintaining high levels of the glass phase. Raw materials thus modified meet the requirements for the use in cellular concrete production technology with beneficial use of exothermic reaction heat from fly ash treatment in pre-heating the autoclaves.


2013 ◽  
Vol 743-744 ◽  
pp. 180-185
Author(s):  
Jun Hua Zhang ◽  
Zong Hui Zhou ◽  
De Cheng Zhang ◽  
Xin Cheng

Artificial aggregates with high-performance were prepared by the methods including steel slag, furnace slag, fly ash and coal gangue, and the recycling concrete was prepared by artificial aggregates instead of natural aggregates. This kind of concrete abandoned was able to completely regenerate cement, which will make the reuse of concrete possible. The composition and characteristics of the artificial aggregates will produce a significant effect on the interfacial transition zone (ITZ) in recycling concrete. The morphological features and mineral composition of three artificial aggregates were analyzed by SEM and XRD, and the ITZ of three recycling concrete and one ordinary concrete was investigated by SEM and EDS. The results showed that compared with ordinary concrete, although the recycling concretes ITZ had a small amount of CH crystal, most of the space was filled with dense hydration products. The interface width was 40μm, which less than 50μm of ordinary concrete. Artificial aggregates with different ratio of raw materials had a great effect on recycling concretes ITZ. The ITZ of recycling concrete prepared with 30% steel slag, 50% furnace slag, 20% fly ash had the smallest Ca/Si and much more C-S-H. the structure of ITZ was much denser and the microstructure was relatively better.


2015 ◽  
Vol 814 ◽  
pp. 533-538
Author(s):  
Zhen Guo Peng ◽  
Xian Zheng Gong ◽  
Yu Liu ◽  
Chen Li ◽  
Xiao Liu

With the development of science and technology and industry level, solid wastes are fully utilized. Among which gangue is the solid waste generated in the process of coal mining, its comprehensive utilization rate is more than 60%. Environmental pollution in the process of coal mining is one of the typical environmental problems confronted in China. In this paper, the life cycle inventory (LCI) of gangue was acquired by the method of life cycle assessment and further environmental impact assessment was achieved as well. The results showed that environmental impacts based on allocation of calorific value were greater than that of economic value, and it’s about 3.68 times the impacts assigned by economic value. Therefore allocation of economic value was better.


Abstract. To overcome the shortage of natural resources for the production of concrete, many waste materials are used to replace the raw materials of concrete. In this way, bottom ash is one of the major industrial wastes which shall be used as the replacement of materials in concrete production. It shall be used to replace the materials either up to one-third. This review brings out the evaluation of the industrial waste material which can be repeatedly used as a substitution for concrete as fine aggregate. This paper reviewed the use of industrial waste i.e., bottom ash as fine aggregate in the concrete. The parameters discussed were physical, chemical, fresh, and hardened properties of the concrete with partial replacement of bottom ash. By reviewing some of the research papers, concluded that 10-15% replacement of fine aggregates is acceptable for all the properties of concrete. High utilization of natural sources -gives the pathway to produce more industrial wastes which are responsible for the development of new sustainable development.


In recent decades, there is a sprut in the growth of the construction industry. Aggregates are one of the main ingredients for making concrete. Depletion of natural resources of sand and the effect of mass production of cement on sustainable environment, need studies on the use of alternative materials. On the other hand, dumping of wastes from the industries are piling up resulting in the pollution of the environment. By considering the above facts, severe studies are focused on partial replacement of river sand with alternatives like copper slag, steel slag, quarry dust, etc., The outcome of these studies shows that the alternate materials enlarge the mechanical and durability properties of concrete. The optimum dose of alternate materials to replacement of sand is evaluated. In this paper, technical papers published by researchers are studied, discussed and compared


Sign in / Sign up

Export Citation Format

Share Document