scholarly journals Concrete Production Using Fine Glass Aggregates as Partial Replacement of Sand

Author(s):  
Samuel Cameli Fernandes ◽  
Laerte Melo Barros ◽  
Rodrigo Paz Barros ◽  
Pedro Felix Liotto ◽  
David Barbosa de Alencar

Waste reuse is considered an excellent alternative for sustainable development. For the World Commission on Environment and Development in Our Common Future, sustainability is "one that meets the needs of the present without compromising the ability of future generations to meet their needs." One way to provide a sustainable solution for glass would be the reuse of glass waste in the production of concrete. Glass residues when suitably crushed and sieved, to assume appropriate granulometry, may exhibit characteristics similar to natural aggregates. The use of glass waste when used in concrete manufacturing reduces production costs. The main objective of the research was to replace, as much as possible, in percentage, the quantity of sand and gravel aggregates by glass waste with the same granulometry, as a way to reduce costs, reduce the use of raw materials and reduce the quantity of wastes that were inadequately disposed of in landfills. Samples of glass waste were collected in the construction industry itself, in works and glassware companies that work with cutting and delivery of the product. Comparisons were made between concretes produced with natural and concrete aggregates produced with the substitution of 20%, 30%, 40% and 50% of the fine aggregate, all of which glass was used as a substitute. The comparative analyzes were the mechanical properties of compression strength and diametral compression traction at 7, 14, 21, 28 and 90 days.

Abstract. To overcome the shortage of natural resources for the production of concrete, many waste materials are used to replace the raw materials of concrete. In this way, bottom ash is one of the major industrial wastes which shall be used as the replacement of materials in concrete production. It shall be used to replace the materials either up to one-third. This review brings out the evaluation of the industrial waste material which can be repeatedly used as a substitution for concrete as fine aggregate. This paper reviewed the use of industrial waste i.e., bottom ash as fine aggregate in the concrete. The parameters discussed were physical, chemical, fresh, and hardened properties of the concrete with partial replacement of bottom ash. By reviewing some of the research papers, concluded that 10-15% replacement of fine aggregates is acceptable for all the properties of concrete. High utilization of natural sources -gives the pathway to produce more industrial wastes which are responsible for the development of new sustainable development.


2020 ◽  
Vol 12 (23) ◽  
pp. 9873
Author(s):  
Vojtěch Václavík ◽  
Marcela Ondová ◽  
Tomáš Dvorský ◽  
Adriana Eštoková ◽  
Martina Fabiánová ◽  
...  

Sustainability in the construction industry refers to all resource-efficient and environmentally responsible processes throughout the life cycle of a structure. Green buildings may incorporate reused, recycled, or recovered materials in their construction. Concrete is as an important building material. Due to the implementation of by-products and waste from various industries into its structure, concrete represents a significant sustainable material. Steel slag has great potential for its reuse in concrete production. Despite its volume changes over time, steel slag can be applied in concrete as a cement replacement (normally) or as a substitute for natural aggregates (rarely). This paper focused on an investigation of concrete with steel slag as a substitute of natural gravel aggregate. Testing physical and mechanical properties of nontraditional concrete with steel slag as a substitute for natural aggregates of 4/8 mm and 8/16 mm fractions confirmed the possibility of using slag as a partial replacement of natural aggregate. Several samples of concrete with steel slag achieved even better mechanical parameters (e.g., compressive strength, frost resistance) than samples with natural aggregate. Moreover, a life cycle assessment (LCA) was performed within the system boundaries cradle-to-gate. The LCA results showed that replacements of natural aggregates significantly affected the utilization rate of nonrenewable raw materials and reduced the overall negative impacts of concrete on the environment up to 7%. The sustainability indicators (SUI), which considered the LCA data together with the technical parameters of concrete, were set to evaluate sustainability of the analyzed concretes. Based on the SUI results, replacing only one fraction of natural gravel aggregate in concrete was a more sustainable solution than replacing both fractions at once. These results confirmed the benefits of using waste to produce sustainable materials in construction industry.


Electrical and electronic waste (E-waste) has become a great matter of concern all around the world. Due to the fast growth in kinescope technology, Cathode Ray Tubes (CRTs) are being replaced by lighter and thinner panels with flat displays, namely – Light Emitting Diodes (LEDs), Plasma Display Panels (PDPs) and Liquid Crystal Displays (LCDs). The environmental hazards caused by CRTs waste generation have become an extensive dilemma around the globe. Lead is contained in sufficient amounts in the waste CRTs, which causes serious hazards to human health and the environment. The increasing demand for concrete and natural resources due to swift urbanization has made it crucial to replace the natural aggregates in concrete either as a partial replacement or total replacement, without affecting the concrete performance. CRT waste glasses are abundant in silica, have low water absorption property and adequate intrinsic strength. These characteristics of CRT waste glass make it apt for usage as pozzolan or sand in construction materials. They can be partially or totally replaced for natural sand as fine aggregate in concrete. This review work extends an in-depth summary of literature detailing the reuse of CRT glass waste as a fine aggregate replacement in concrete. The properties such as water performance, thermal property, strength and durability of CRT glass waste-based concrete and their method of manufacturing have also been studied in this paper. Furthermore, a comparative performance analysis of CRT glass waste concrete with other E-waste incorporated concrete has also been included in this paper. The current work shall contribute to enhancement towards sustainability and economic development of CRT glass waste incorporated concrete in the construction industry. Thus, the issues related to CRT glass waste such as contamination of soil, environment and water bodies, health issues caused to living beings and simultaneously, the degradation of natural restricted aggregate resources could be reduced considerably by several folds.


2014 ◽  
Vol 803 ◽  
pp. 16-20 ◽  
Author(s):  
Nur Liza Rahim ◽  
Roshazita Che Amat ◽  
Norlia Mohamad Ibrahim ◽  
Shamshinar Salehuddin ◽  
Syakirah Afiza Mohammed ◽  
...  

Glass dust waste creates chronic environmental problems, mainly due to the inconsistency of waste glass streams. Glass is widely used in our lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. Glass is an ideal material for recycling. The use of recycled glass helps in energy saving. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. One of its significant contributions is to the construction field where the waste glass was reused for concrete production. The properties of concretes containing glass dust waste as fine aggregate were investigated in this study. Glass dust waste was used as a partial replacement for sand at 10%, 20% and 50% of concrete mixes. Compression strength for 7, 14 and 28 days concrete of age were compared with those of concrete made with natural fine aggregates. The results proved that highest strength activity given by glass dust waste after 28 days. The compressive strength of specimens with 10% glass dust waste content were 32.9373 MPa, higher than the concrete control specimen at 28 days. Using glass dust waste in concrete is an interesting possibility for economy on waste disposal sites and conservation of natural resources.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Ivan Janotka ◽  
Pavel Martauz ◽  
Michal Bačuvčík

In addition to the known uses of natural clays, less publication attention has been paid to clays returned to the production process. Industrially recovered natural clays such as bricks, tiles, sanitary ceramics, ceramic roofing tiles, etc., are applicable in building materials based on concrete as an artificial recycled aggregate or as a pozzolanic type II addition. In this way, the building products with higher added value are obtained from the originally landfilled waste. This paper details the research process of introducing concrete with recycled brick waste (RBW) up to the application output. The emphasis is placed on using a RBW brash as a partial replacement for natural aggregates and evaluating an RBW powder as a type II addition for use in concrete. A set of the results for an RBW is reported by the following: (a) an artificial RBW fine aggregate meets the required standardized parameters for use in industrially made concrete, (b) a RBW powder is suitable for use in concrete as industrially made type II addition TERRAMENT showing the same pozzolanic reactivity as a well-known and broadly used pozzolan-fly ash, and (c) such an RBW as aggregate and as powder are, therefore, suitable for the production of industrially made TRITECH Eco-designed ready-mixed concrete.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2020 ◽  
pp. 0734242X2094537 ◽  
Author(s):  
Gopinath Athira ◽  
Abdulsalam Bahurudeen ◽  
Vijaya Sukumar Vishnu

As stated in the European Commission’s waste framework directive, the geographic proximity of wastes to the potential recovery/disposal site is of paramount importance in attaining an effective resource recycling paradigm. The global interest in achieving an end-of-waste scenario encourages the recovery of useful products/secondary raw materials from locally available waste materials. Sugarcane bagasse ash is an abundantly available waste (44,200 tonnes day–1) from sugar plants in India which has the potential to be used as a partial replacement to cement in ready-mix concrete plants. Although pozzolanic performance of sugarcane bagasse ash and its ability in reducing the carbon emissions associated with concrete production have been reported in earlier research studies, its use in concrete is hindered due to the lack of availability and accessibility data. In this study, the geographical distribution of sugar plants and the available quantity of sugarcane bagasse ash in India have been determined. In addition, a detailed network analysis using a geographic information system was conducted to quantify the geographic proximity of bagasse ash, fly ash and slag sources to ready-mix concrete plants. The study results indicate that for most of the ready-mix concrete plants in India, the probability of having a bagasse ash source in proximity is higher than the probability of encountering slag/fly ash sources.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1693 ◽  
Author(s):  
Maja Kępniak ◽  
Piotr Woyciechowski ◽  
Paweł Łukowski ◽  
Justyna Kuziak ◽  
Rafał Kobyłka

The idea of sustainable development assumes that natural resources must be treated as limited goods and that waste must be managed rationally. This idea and the constant striving to reduce production costs make the use of waste materials as substitutes for traditionally used raw materials from non-renewable sources increasingly popular. In cement concrete technology, there are many possibilities to use waste as components of mortars and concretes. The subject of this paper is a fine-grained material, obtained as a by-product during the preparation of aggregate for mineral-asphalt mixtures. The aim of the research was to test the suitability of the selected type of powder, namely limestone powder, as a component of cement composites. The paper presents an evaluation of the potential of using the limestone powder as a substitute for the fine aggregate, focusing on the impact of such a modification on aspects of durability. The sulfate degradation and chloride ion diffusion in concrete were investigated. The overall desirability function has been determined. It was demonstrated that the satisfactory value of the general desirability can be attributed to most of the investigated concretes. Positive test results support the potential of replacing part of natural fine aggregate with the tested waste limestone dust without a negative impact on the durability of concrete.


2019 ◽  
Vol 11 (17) ◽  
pp. 4647 ◽  
Author(s):  
Warati ◽  
Darwish ◽  
Feyessa ◽  
Ghebrab

The increase in the demand for concrete production for the development of infrastructures in developing countries like Ethiopia leads to the depletion of virgin aggregates and high cement demand, which imposes negative environmental impacts. In sustainable development, there is a need for construction materials to focus on the economy, efficient energy utilization, and environmental protections. One of the strategies in green concrete production is the use of locally available construction materials. Scoria is widely available around the central towns of Ethiopia, especially around the rift valley regions where huge construction activities are taking place. The aim of this paper is therefore to analyze the suitability of scoria as a fine aggregate for concrete production and its effect on the properties of concrete. A differing ratio of scoria was considered as a partial replacement of fine aggregate with river sand after analyzing its engineering properties, and its effect on the mechanical properties of concrete were examined. The test results on the engineering properties of scoria revealed that the material is suitable to be used as a fine aggregate in concrete production. The replacement of scoria with river sand also enhanced the mechanical strength of the concrete. Generally, the findings of the experimental study showed that scoria could replace river sand by up to 50% for conventional concrete production.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 157 ◽  
Author(s):  
Ruby Gutiérrez ◽  
Mónica Villaquirán-Caicedo ◽  
Sandra Ramírez-Benavides ◽  
Myriam Astudillo ◽  
Daniel Mejía

Metakaolin-based geopolymer cements were produced by alkaline activation with a potassium hydroxide and potassium silicate solution. To produce the geopolymer composites, 10 wt.% titanium oxide (TiO2) and 5 wt.% copper oxide (CuO) nanoparticles were used. The geopolymer mortar was prepared using glass waste as fine aggregate. The raw materials and materials produced were characterized by X-ray diffraction, electron microscopy, and Fourier-transform infrared spectroscopy techniques. Likewise, the geopolymer samples were characterized to determine their physical properties, including their density, porosity, and absorption. The photocatalytic activity of the materials was evaluated by activating the nanoparticles in a chamber with UV–Vis light during 24 h; then, different tests were performed to determine the growth inhibition of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria in nutrient agar for times of up to 24 h. The study results showed that a geopolymer mortar containing glass waste as fine aggregate (GP-G) exhibited a water absorption 56.73% lower than that of the reference geopolymer paste without glass (GP). Likewise, glass particles allowed the material to have a smoother and more homogeneous surface. The pore volume and density of the GP-G were 37.97% lower and 40.36% higher, respectively, than those of the GP. The study with bacteria showed that, after 24 h in the culture media, the GP-G mortars exhibited a high inhibition capacity for the growth of P. aeruginosa from solutions of 10−4 mL and in solutions of 10−6 mL for E. coli and S. aureus. These results indicate the possibility of generating antibacterial surfaces by applying geopolymer composite.


Sign in / Sign up

Export Citation Format

Share Document