scholarly journals Eco-Friendly Yield and Greenhouse Gas Emissions as Affected by Fertilization Type in a Tropical Smallholder Rice System, Ghana

2020 ◽  
Vol 12 (24) ◽  
pp. 10239
Author(s):  
Kofi Konadu Boateng ◽  
George Yaw Obeng ◽  
Ebenezer Mensah

Data on greenhouse gas emission levels associated with fertilization applied in smallholder paddy rice farms in Ghana are scanty. The current study investigated fertilization types to determine their eco-friendliness on yield, Global Warming Potential (GWP) and Greenhouse Gas Intensity (GHGI) in a major rice season in the forest zone of Ghana. In total, five treatments were studied viz Farmer Practice (BAU); Biochar + Farmer Practice (BAU + BIO); Poultry Manure + Farmer Practice (BAU + M); Biochar + Poultry Manure + Farmer Practice (BAU + BIO + M); and Control (CT). Fluxes of methane (CH4) and nitrous oxide (N2O) were measured using a static chamber-gas chromatography method. N2O emissions at the end of the growing season were significantly different across treatments. BAU + BIO + M had highest N2O flux mean of 0.38 kgNha−1day−1 (±0.18). BAU + M had the second highest N2O flux of 0.27 kgNha−1day−1 (±0.08), but was not significantly different from BAU at p > 0.05. BAU+BIO recorded 0.20 kgNha−1day−1 (±0.12), lower and significantly different from BAU, BAU + M and BAU + BIO + M. CH4 emissions across treatments were not significantly different. However, highest CH4 flux was recorded in BAU+BIO at 4.76 kgCH4ha−1day−1 (±4.87). GWP based on seasonal cumulative GHG emissions among treatments ranged from 5099.16 (±6878.43) to 20894.58 (±19645.04) for CH4 and 756.28 (±763.44) to 27201.54 (±9223.51) kgCO2eqha−1Season−1 for N2O. The treatment with significantly higher yield and low emissions was BAU + M with a GHGI of 4.38 (±1.90) kgCO2eqkg−1.

2012 ◽  
Vol 66 (11) ◽  
pp. 2483-2495 ◽  
Author(s):  
L. Guo ◽  
J. Porro ◽  
K. R. Sharma ◽  
Y. Amerlinck ◽  
L. Benedetti ◽  
...  

A benchmark simulation model, which includes a wastewater treatment plant (WWTP)-wide model and a rising main sewer model, is proposed for testing mitigation strategies to reduce the system's greenhouse gas (GHG) emissions. The sewer model was run to predict methane emissions, and its output was used as the WWTP model input. An activated sludge model for GHG (ASMG) was used to describe nitrous oxide (N2O) generation and release in activated sludge process. N2O production through both heterotrophic and autotrophic pathways was included. Other GHG emissions were estimated using empirical relationships. Different scenarios were evaluated comparing GHG emissions, effluent quality and energy consumption. Aeration control played a clear role in N2O emissions, through concentrations and distributions of dissolved oxygen (DO) along the length of the bioreactor. The average value of N2O emission under dynamic influent cannot be simulated by a steady-state model subjected to a similar influent quality, stressing the importance of dynamic simulation and control. As the GHG models have yet to be validated, these results carry a degree of uncertainty; however, they fulfilled the objective of this study, i.e. to demonstrate the potential of a dynamic system-wide modelling and benchmarking approach for balancing water quality, operational costs and GHG emissions.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2013 ◽  
Vol 69 (3) ◽  
pp. 451-463 ◽  
Author(s):  
D. W. de Haas ◽  
C. Pepperell ◽  
J. Foley

Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N2O) emissions dominated the Scope 1 (direct) emissions. However, N2O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the ‘default’ NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N2O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N2O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO2 contributions are relatively minor, it appears that opportunities to reduce indirect emissions as a result of modest savings in power consumption are at least in the same order as those from reducing N2O emissions. To avoid potentially high reportable emissions under NGER guidelines, particularly for methane, the onus is placed on WWTP managers to ensure that accurate plant monitoring operating records are kept.


Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


2014 ◽  
Vol 23 (6) ◽  
pp. 771 ◽  
Author(s):  
Liubov Volkova ◽  
C. P. Mick Meyer ◽  
Simon Murphy ◽  
Thomas Fairman ◽  
Fabienne Reisen ◽  
...  

A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.


2020 ◽  
Vol 12 (8) ◽  
pp. 3436 ◽  
Author(s):  
Qi Zhang ◽  
Jing Xiao ◽  
Jianhui Xue ◽  
Lang Zhang

Agricultural disturbance has significantly boosted soil greenhouse gas (GHG) emissions such as methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Biochar application is a potential option for regulating soil GHG emissions. However, the effects of biochar application on soil GHG emissions are variable among different environmental conditions. In this study, a dataset based on 129 published papers was used to quantify the effect sizes of biochar application on soil GHG emissions. Overall, biochar application significantly increased soil CH4 and CO2 emissions by an average of 15% and 16% but decreased soil N2O emissions by an average of 38%. The response ratio of biochar applications on soil GHG emissions was significantly different under various management strategies, biochar characteristics, and soil properties. The relative influence of biochar characteristics differed among soil GHG emissions, with the overall contribution of biochar characteristics to soil GHG emissions ranging from 29% (N2O) to 71% (CO2). Soil pH, the biochar C:N ratio, and the biochar application rate were the most influential variables on soil CH4, CO2, and N2O emissions, respectively. With biochar application, global warming potential (impact of the emission of different greenhouse gases on their radiative forcing by agricultural practices) and the intensity of greenhouse gas emissions (emission rate of a given pollutant relative to the intensity of a specific activity) significantly decreased, and crop yield greatly increased, with an average response ratio of 23%, 41%, and 21%, respectively. Our findings provide a scientific basis for reducing soil GHG emissions and increasing crop yield through biochar application.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 29 ◽  
Author(s):  
Yo Toma ◽  
Nukhak Nufita Sari ◽  
Koh Akamatsu ◽  
Shingo Oomori ◽  
Osamu Nagata ◽  
...  

Green manure application helps maintain soil fertility, reduce chemical fertilizer use, and carbon sequestration in the soil. Nevertheless, the application of organic matter in paddy fields induces CH4 and N2O emissions. Prolonging mid-season drainage reduces CH4 emissions in paddy fields. Therefore, the combined effects of green manure application and mid-season drainage prolongation on net greenhouse gas emission (NGHGE) were investigated. Four experimental treatments were set up over a 2-year period: conventional mid-season drainage with (CMG) and without (CM) green manure and prolonged (4 or 7 days) mid-season drainage with (PMG) and without (PM) green manure. Astragalus sinicus L. seeds were sown in autumn and incorporated before rice cultivation. No significant difference in annual CH4 and N2O emissions, heterotrophic respiration, and NGHGE between treatments were observed, indicating that green manure application and mid-season drainage prolongation did not influence NGHGE. CH4 flux decreased drastically in PM and PMG during mid-season drainage under the hot and dry weather conditions. However, increasing applied carbon increases NGHGE because of increased CH4 and Rh. Consequently, combination practice of mid-season drainage prolongation and green manure utilization can be acceptable without changing NGHGE while maintaining grain yield in rice paddy fields under organically managed rice paddy fields.


2015 ◽  
Vol 787 ◽  
pp. 187-191
Author(s):  
P.M. Sivaram ◽  
N. Gowdhaman ◽  
D.Y. Ebin Davis ◽  
M. Subramanian

Global warming and climate change are the foremost environmental challenges facing the world today. It is our responsibility to minimize the consumption of energy and hence reduce the emissions of greenhouse gases. Companies choose ‘Carbon Footprint’ as a tool to calculate the greenhouse gas emission to show the impact of their activities on the environment. In this working paper, we assess the carbon foot print of an educational institution and suggest suitable measures for reducing it. Greenhouse gas emitting protocol for an academic institution in terms of tones of equivalent CO2 per year is projected using three basic steps includes planning (assessment of data’s), calculation and estimation of CO2 emitted. The estimation of carbon foot print is calculated by accounting direct emission from sources owned/controlled by the educational institution and from indirect emission i.e. purchased electricity, electricity produced by diesel Generator (DG), transport, cooking (Liquefied Petroleum Gas) and other outsourced distribution. The CO2 absorbed by trees are also accounted. Some of the options are identified in order to reduce CO2 level. The information of corporate carbon footprint helps us identifying the Green House Gases (GHG) emission “hot spots” and identifies where the greatest capacity exists in order to reduce the GHG emissions. The main prioritization goes to transport and then followed by DG, cooking and then electricity. The per capita CO2 emission and the total CO2 emission for a typical educational institution are estimated.


Author(s):  
Nguyen Le Trang ◽  
Bui Thi Thu Trang ◽  
Mai Van Trinh ◽  
Nguyen Tien Sy ◽  
Nguyen Manh Khai

Abstract: This study used the Denitrification-Decomposition (DNDC) model to calculate greenhouse gas emissions from a paddy rice cultivation in ​​Nam Dinh province. The results show that the total CH4 emission from paddy rice field in Nam Dinh province ranges from 404 to 1146kg/ha/year. Total N2O emissions range from 0.8 to 4.2 kg/ha/year; The total amount of CO2e varies between 10,000 and 30,000 kg CO2e / ha / year. CH4 emissions on typical salinealluvial soils, light mechanics are the highest and lowest on alkaline soils. Alluvium, alkaline soils have the highest N2O emissions and the lowest is the typical saline soils. The study has also mapped CH4, N2O and CO2e emissions for Nam Dinh province. Keywords: DNDC, Green house gas, agricultural sector, Nam Dinh,  GIS. References: [1] Bộ Tài nguyên và Môi trường, Báo cáo kỹ thuật kiểm kê quốc gia KNK của Việt Nam năm 2014, NXB Tài Nguyên Môi trường và Bản đồ Việt Nam, 2018.[2] D.L. Giltrap, C.Li, S. Saggar, DNDC: A process-based model of greenhouse gas fluxes from agricultural soils, Agriculture, Ecosystems & Environment,Volume 136 (2010), 292–300. https://doi:10.1016/j.agee.2009.06.014.[3] Viện Thổ nhưỡng Nông hóa, Báo cáo kết quả đề tài: “Nghiên cứu, đánh giá tài nguyên đất sản xuất nông nghiệp phục vụ chuyển đổi cơ cấu cây trồng chính có hiệu quả tại tỉnh Nam Định”, 2017.[4] Trung tâm Khí tượng thủy văn quốc gia – Bộ TN&MT, Số liệu thống kê khí tượng thủy văn các trạm khí tượng Văn Lý, Nam Định, Ninh Bình, Thái Bình năm 2014, 2015.[5] Niên giám thống kê tỉnh Nam Định, 2015.[6] T. Weaver, P. Ramachandran, L. Adriano, Policies for High Quality, Safe, and Sustainable Food Supply in the Greater Mekong Subregion. ADB: Manila. (2019) Chapter 7, 178-204.[7] Mai Văn Trịnh, Sổ tay hướng dẫn đo phát thải khí nhà kính trong canh tác lúa. NXB Nông nghiệp, 2016.    


2015 ◽  
Vol 12 (18) ◽  
pp. 15301-15336 ◽  
Author(s):  
D. E. Pelster ◽  
M. C. Rufino ◽  
T. Rosenstock ◽  
J. Mango ◽  
G. Saiz ◽  
...  

Abstract. Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha−1, −6.0 to 2.4 kg CH4-C ha−1 and −0.1 to 1.8 kg N2O-N ha−1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha−1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg−1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.


Sign in / Sign up

Export Citation Format

Share Document