scholarly journals Bioaerosol Contribution to Atmospheric Particulate Matter in Indoor University Environments

2021 ◽  
Vol 13 (3) ◽  
pp. 1149
Author(s):  
Francesca Marcovecchio ◽  
Cinzia Perrino

Within the framework of the project “Integrated Evaluation of Indoor Particulate Exposure”, we carried out a 4-week field study to determine indoor bioaerosol, and its contribution to particulate matter (PM)10 and organic matter. The study was carried out in university classrooms, where most of the common indoor sources of atmospheric particles are missing. Bioaerosol was determined by a method based on propidium iodide staining, observation by fluorescence microscopy, and image analysis. Indoor bioaerosol concentrations were compared with outdoor values, which were determined simultaneously. The samplings periods were scheduled to divide weekday hours, when the students were inside, from night-time hours and weekends. Very high bioaerosol concentrations were detected inside the classrooms with respect to outdoor values. The mean difference was 49 μg/m3 when the students were inside, 5.4 μg/m3 during the night, and it became negative during the weekends. Indoor-to-outdoor ratios were 6.0, 4.2, and 0.7, respectively. Bioaerosol contributed 26% to organics and 10% to PM10. In indoor samples collected during the day, the microscope images showed numerous skin fragments, which were mostly responsible for the increase in the bioaerosol mass. People’s presence proved to be responsible for a significant increase in bioaerosol concentration in crowded indoor environments.

Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


2011 ◽  
Vol 21 (6) ◽  
pp. 857-862 ◽  
Author(s):  
Mahmoud M. M. Abdel-Salam

Particulate matter is one of the most important indoor air pollutants that could cause a number of adverse health effects. Quantification of total suspended particulate matter (TSP) in homes in the city of Alexandria was carried out. In the present study, 15 of the 21 homes showed a higher average indoor TSP concentration than the outdoor sample, and the median indoor/outdoor ratio was 1.08. Moreover, the outdoor and the mean indoor TSP concentrations were found to correlate significantly. Concentrations of indoor particulate matter were found to be influenced by indoor sources and human activities as well as outdoor particles.


2021 ◽  
Author(s):  
Saurabh Mendiratta ◽  
Sunil Gulia ◽  
Prachi Goyal ◽  
Sanjeev Kumar Goyal

High level of particulate matter in an office building is one of the prime concerns for occupant’s health and their work performance. The present study focuses on the evaluation of the distribution pattern of airborne particles in three office buildings in Delhi City. The study includes the Assessment of PM10, PM2.5 and PM1 in the different indoor environments, their particle size distribution, I/O ratio, a correlation between pollutants their sources and management practices. The features of buildings I, II, and III are old infrastructure, new modern infrastructure, and an old building with good maintenance. The results indicate that the average concentrations of PM10, PM2.5, and PM1 are found in the range of 55–150 μg m−3, 41–104 μg m−3 and 37–95 μg m−3, respectively in Building I, 33–136 μg m−3, 30–84 μg m−3 and 28–73 μg m−3, respectively in Building II and 216–330 μg m−3, 188–268 μg m−3 and 171–237 μg m−3, respectively in Building III. The maximum proportion of the total mass contributed by PM0.25–1.0 i.e., up to 75%, 86%, and 76% in the meeting room of Building I, II and III, respectively. The proportion of ultrafine particles was found higher in the office area where the movement was minimum and vice versa. The higher I/O indicates the contribution of the presence of indoor sources for ultra-fine and finer particles. Further, possible strategies for indoor air pollution control are also discussed.


2018 ◽  
Vol 28 ◽  
pp. 01032
Author(s):  
Patrycja Rogula-Kopiec ◽  
Józef Pastuszka ◽  
Barbara Mathews ◽  
Kamila Widziewicz

The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.


2011 ◽  
Vol 11 (10) ◽  
pp. 28689-28711 ◽  
Author(s):  
N. Lang-Yona ◽  
K. Dannemiller ◽  
N. Yamamoto ◽  
N. Burshtein ◽  
J. Peccia ◽  
...  

Abstract. Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rohovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.


2012 ◽  
Vol 12 (5) ◽  
pp. 2681-2690 ◽  
Author(s):  
N. Lang-Yona ◽  
K. Dannemiller ◽  
N. Yamamoto ◽  
N. Burshtein ◽  
J. Peccia ◽  
...  

Abstract. Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.


1988 ◽  
Vol 59 (01) ◽  
pp. 029-033 ◽  
Author(s):  
K G Chamberlain ◽  
D G Penington

SummaryNormal human platelets have been separated according to density on continuous Percoll gradients and the platelet distribution divided into five fractions containing approximately equal numbers of platelets. The mean volumes and protein contents of the platelets in each fraction were found to correlate positively with density while the protein concentration did not differ significantly between the fractions. Four mitochondrial enzymes (monoamine oxidase, glutamate dehydrogenase, cytochrome oxidase and NADP-dependent isocitrate dehydrogenase) were assayed and their activities per unit volume were found to increase in a very similar monotonie fashion with platelet density. When MAO and GDH were assayed on the same set of density fractions the correlation between the two activities was very high (r = 0.94–1.00, p <0.001) and a similar close correlation was found between MAO and ICDH. The results support the hypothesis that high density platelets either have a higher concentration of mitochondria or have larger mitochondria than low density platelets.


2020 ◽  
Vol 22 (3) ◽  
pp. 141-145
Author(s):  
Krishna Chandra Devkota ◽  
S Hamal ◽  
PP Panta

Pleural effusion is present when there is >15ml of fluid is accumulated in the pleural space. It can be divided into two types; exudative and transudative pleural effusion. Tuberculosis and parapneumonic effusion are the common cause of exudative pleural effusion whereas heart failure accounts for most of the cases of transudative pleural effusion. This study was a hospital based cross sectional study performed at Nepal Medical College during the period of January 2016-December 2016. A total of 50 patients who fulfilled the inclusion criteria were enrolled. Pleural effusion was confirmed by clinical examination and radiology. After confirmation of pleural effusion, pleural fluid was aspirated and was analysed for protein, LDH, cholesterol. The Heffner criteria was compared with Light criteria to classify exudative or transudative pleural effusion. Among 50 patients, 30 were male and 20 were female. The mean age of patient was 45.4±21.85 years. The sensitivity and specificity of using Light criteria to detect the two type of pleural effusion was 100% and 90.9%, whereas using Heffner criteria was 94.87%, 100% respectively(P<0.01). There are variety of causes for development of pleural effusion and no one criteria is definite to differentiate between exudative or transudative effusion. In this study Light criteria was more sensitive whereas Heffner criteria was more specific to classify exudative pleural effusion. Hence a combination of criteria might be useful in case where there is difficulty to identify the cause of pleural effusion.


Sign in / Sign up

Export Citation Format

Share Document