scholarly journals Environmental and Stress Analysis of Wild Plant Habitat in River Nile Region of Dakahlia Governorate on Basis of Geospatial Techniques

2021 ◽  
Vol 13 (11) ◽  
pp. 6377
Author(s):  
Yasser A. El-Amier ◽  
Ahmed El-Zeiny ◽  
El-Sayed F. El-Halawany ◽  
Ashraf Elsayed ◽  
Mohamed A. El-Esawi ◽  
...  

Spatiotemporal environmental changes lead to disturbances in wild plant habitats, particularly in regions characterized by changeable land use and cover. The present study aims to characterize wild plant habitats in the River Nile region of Dakahlia Governorate using a multidisciplinary approach, incorporating remote sensing, GIS and sampling analyses. Twenty-four stands representing the wild plant habitats in the River Nile region were geographically identified, sampled and analyzed. Water and soil samples were investigated for physical and chemical characteristics. Two calibrated multispectral Landsat images dated 1999 and 2019 were processed to produce LULC, NDSI, NDMI and NDSI to characterize wild plan habitats. The floristic composition showed the presence of 64 species belonging to 53 genera and 28 families. Ecologically, the recorded plant species in the present work can be classified into four main categories, which are separated into three communities according to the TWINSPAN classification. Results showed that the annual loss of agricultural lands (3.98 km2) is closely relevant to the annual expansion of urban areas (4.24 km2). Although the uncontrolled urban sprawl caused loss of agricultural lands, it leads to the expansion of wild plant habitats, represented mainly by the sparse class and partially by the moderately dense class as obtained from NDVI. The increase in mean values of the moisture (NDMI) from 0.034 in 1999 to 0.64 in 2019 may have arisen from the increase in total areas of wild plant habitats during the investigated period (1999–2019). This might increase the suitability of conditions for wild habitats which induces the proliferation of natural plants.

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Ahmed El-Zeiny ◽  
Shrouk A. Elagami ◽  
Hoda Nour-Eldin ◽  
El-Sayed F. El-Halawany ◽  
Giuliano Bonanomi ◽  
...  

Environmental and land-use changes put severe pressure on wild plant habitats. The present study aims to assess the biodiversity of wild plant habitats and the associated spatiotemporal environmental changes in the coastal region of Dakahlia Governorate following an integrated approach of remote sensing, GIS, and samples analysis. Thirty-seven stands were spatially identified and studied to represent the different habitats of wild plants in the Deltaic Mediterranean coastline region. Physical and chemical characteristics of soil samples were examined, while TWINSPAN classification was used to identify plant communities. Two free Landsat images (TM and OLI) acquired in 1999 and 2019 were processed to assess changes via the production of land use and cover maps (LULC). Moreover, NDSI, NDMI, and NDSI indices were used to identify wild plant habitats. The floristic composition indicated the existence of 57 species, belonging to 51 genera of 20 families. The largest families were Asteraceae, Poaceae, and Chenopodiaceae. The classification of vegetation led to the identification of four groups. Canonical Correspondence Analysis (CCA) revealed that electrical conductivity, cations, organic carbon, porosity, chlorides, and bicarbonates are the most effective soil variables influencing vegetation. The results of the spectral analysis indicated an annual coverage of bare lands (3.56 km2), which is strongly related to the annual increase in vegetation (1.91 km2), water bodies (1.22 km2), and urban areas (0.43 km2). The expansion of urban and agricultural regions subsequently increased water bodies and caused occupancy of bare land, resulting in the development of wild plant habitats, which are mostly represented by the sparse vegetation class as evaluated by NDVI. The increase in mean moisture values (NDMI) from 0.03 in 1999 to 0.15 in 2019 might be explained by the increase in total areas of wild plant habitats throughout the study period (1999–2019). This may improve the adequacy of environments for wild habitats, causing natural plant proliferation.


2021 ◽  
Vol 11 (3) ◽  
pp. 3843-3853

Dakahlia Governorate (Egypt) is considered an important area for plant diversity, facing three major problems, namely: high rate of population increase, limited renewable natural resources, limited production of food, forage, and raw materials for industrial purposes. Two multispectral Landsat imageries (TM and OLI 8) on 6th of March 1999 and 19th of March 2019 were calibrated and processed to produce LULC, different spectral indices (land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference Built-up Index (NDBI), normalized difference moisture index (NDMI), modified normalized difference of water index (MNDWI) and normalized difference salinity index (NDSI)). Furthermore, the surface temperature was obtained by processing the thermal bands of the Landsat image. Applying the indices on the raw digital numbers to produce a comparative study with the resulted values to detect the environmental change over the two last decades. According to the analysis, the results detected a loss in the vegetation areas and the bare land in favor of urban areas and water bodies to fulfill the requirements of the residents and the developers. That was confirmed with the analysis of the NDBI, NDSI, and LST that showed an increase as a result of urban sprawling. On the other hand, the NDVI explained that the uncontrolled urban sprawl caused the loss of agricultural lands. There was a slight expansion in the wild plant habitats, represented mainly by sparse class and partially by moderately dense class. Accordingly, this could be a result of the mutation in the habitats to favor the spreading of the moderate and sparse vegetation class, which MNDWI and NDMI confirmed.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 420
Author(s):  
Benas Šilinskas ◽  
Aistė Povilaitienė ◽  
Gintautas Urbaitis ◽  
Marius Aleinikovas ◽  
Iveta Varnagirytė-Kabašinskienė

This study performed a pilot evaluation of the wood quality—defined by a single parameter: dynamic modulus of elasticity (MOEdyn, N mm−2)—of small-leaved lime (Tilia cordata Mill.) trees in urban areas. A search of the literature revealed few studies which examined the specifics of tree wood development in urban areas. Little is known about the potential of wood from urban trees wood of their suitability for the timber industry. In this study, an acoustic velocity measuring system was used for wood quality assessment of small-leaved lime trees. The MOEdyn parameter was evaluated for small-leaved lime trees growing in two urban locations (along the streets, and in an urban park), with an additional sample of forest sites taken as the control. MOEdyn was also assessed for small-leaved lime trees visually assigned to different health classes. The obtained mean values of MOEdyn of 90–120-year old small-leaved lime trees in urban areas ranged between 2492.2 and 2715.8 N mm−2. For younger trees, the values of MOEdyn were lower in the urban areas than in the forest site. Otherwise, the results of the study showed that the small-leaved lime wood samples were of relatively good quality, even if the tree was classified as moderately damaged (which could cause a potential risk to the community). Two alternatives for urban tree management can be envisaged: (1) old trees could be left to grow to maintain the sustainability of an urban area until their natural death, or (2) the wood from selected moderately damaged trees could be used to create wood products, ensuring long-term carbon retention.


2016 ◽  
Vol 76 (4) ◽  
pp. 888-897 ◽  
Author(s):  
L. R. C. C. Xavier ◽  
F. Scherner ◽  
D. C. Burgos ◽  
R. C. Barreto ◽  
S. M. B. Pereira

Abstract Population growth in urban areas changes freshwater ecosystems, and this can have consequences for macrophyte communities as can be seen in the municipalities that border the Capibaribe River, Pernambuco, Brazil. This study reports the effects of urbanization on the composition and structure of macrophyte communities in areas along that river. The following urbanized and non-urbanized sampling sites were chosen: Sites 1 and 2 (municipality of Santa Cruz do Capibaribe), Sites 3 and 4 (municipality of Toritama), and Sites 5 and 6 (metropolitan region of Recife). These sites were visited every two months from January to July 2013 to observe seasonal variation (wet and dry seasons). Thirty-one species were identified. Generally, the non-urbanized sites had a higher number of species. Multivariate analyses indicated significant overall differences between urbanized and non-urbanized areas (R = 0.044; p < 0.001) and between seasons (R = 0.018; p < 0.019). Owing to the large variation in physical, chemical, and biological characteristics between urbanized and non-urbanized areas, we found that urbanization significantly influenced the floristic composition and structure of macrophyte communities.


Author(s):  
Innocent A. Ugbong ◽  
Ivan V. Budagov

This paper seeks to show that due to changing climates, there are salient marginal Sahelian conditions (conditions of aridity) emerging on the Northern fringes of Cross River State, a state that is geographical positioned in the southern rainforest belt of Nigeria. The paper adopts a simple descriptive approach and shows the distinct characteristics of this zone, in terms of floristic composition and edaphic and geomorphic structures under changing conditions. Some relationships are established between environmental variables like health, water supply and crop-yield on one hand, and climatic variation, floral life-forms and soil conditions on the other. The changing land use patterns relative to environmental changes are also examined. The paper concludes with a look at current and future adaption strategies to these climate-induced conditions.


Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 5861
Author(s):  
Ana Isabel Sobreiro ◽  
Lucas Lopes da Silveira Peres ◽  
Jessica Amaral Henrique ◽  
Rosilda Mara Mussury ◽  
Valter Vieira Alves-Junior

Forest habitats are important sources of food and nesting resources for pollinators, primarily in urban areas and landscapes with intense agricultural activity. The forest fragmentation and environmental changes occurring in these green refuges are known to impose survival challenges to pollinating bees, leading to species loss. However, it is not well known how the species of bees that visit flowers are distributed in forest micro-environments. To fill this gap, we sampled flower visiting bees in a continuous forest matrix with micro-environments of two forest types (mature and regenerating forest). We examined how the local environmental changes and climatic conditions affect the composition and uniformity of bee communities in the different micro-environments. Our results indicated that both abundance and richness were similar between forest types studied here, however climatic conditions and plant flowering patterns affect the composition of bees. Thus, our results demonstrated that the continuous micro-environments can favor floral visits and the reintegration of bee communities, and still, that this strategy can be used to minimize the impacts of environmental changes at local scales.


2020 ◽  
Vol 13 (4) ◽  
pp. 224
Author(s):  
Fombe Lawrence F. ◽  
Acha Mildred E.

Worldwide urban areas are having increasing influence over the surrounding landscape. Peri-urban regions of the world are facing challenges which results from sprawl with increasing problems of social segregation, wasted land and greater distance to work. This study seeks to examine the trends in land use dynamics, urban sprawl and associated development implications in the Bamenda Municipalities from 1996 to 2018. The study made use of the survey, historical and correlational research designs. The purposive and snowball techniques were used to collect data. Spatiotemporal analyses were carried out on Landsat Images for 1996, 2008, and 2018 obtained from Earth Explorer, Erdas Image 2014 and changes detected from the maps digitized. The SPSS version 21 and MS Excel 2016 were used to analyze quantitative and qualitative data. The former employed the Pearson correlation analysis. Analysis of land use/land cover change detection reveals that built-up area has increased significantly from 1996 to 2018 at the detriment of forest, wetland and agricultural land at different rates within each municipality. These changes have led to invasion of risk zones, high land values, uncoordinated, uncontrolled and unplanned urban growth. The study suggests that proactive planning, use of GIS to monitor land use activities, effective implementation of existing town planning norms and building regulations, are invaluable strategies to sustainably manage urban growth in Bamenda.


2019 ◽  
pp. 1624-1644
Author(s):  
Gabriele Nolè ◽  
Rosa Lasaponara ◽  
Antonio Lanorte ◽  
Beniamino Murgante

This study deals with the use of satellite TM multi-temporal data coupled with statistical analyses to quantitatively estimate urban expansion and soil consumption for small towns in southern Italy. The investigated area is close to Bari and was selected because highly representative for Italian urban areas. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and geospatial data analysis to reveal spatial patterns. Analyses have been carried out using global and local spatial autocorrelation, applied to multi-date NASA Landsat images acquired in 1999 and 2009 and available free of charge. Moreover, in this paper each step of data processing has been carried out using free or open source software tools, such as, operating system (Linux Ubuntu), GIS software (GRASS GIS and Quantum GIS) and software for statistical analysis of data (R). This aspect is very important, since it puts no limits and allows everybody to carry out spatial analyses on remote sensing data. This approach can be very useful to assess and map land cover change and soil degradation, even for small urbanized areas, as in the case of Italy, where recently an increasing number of devastating flash floods have been recorded. These events have been mainly linked to urban expansion and soil consumption and have caused loss of human lives along with enormous damages to urban settlements, bridges, roads, agricultural activities, etc. In these cases, remote sensing can provide reliable operational low cost tools to assess, quantify and map risk areas.


2019 ◽  
pp. 1372-1382
Author(s):  
Cihan Uysal ◽  
Derya Maktav

Urbanization has been increasingly continuing in Turkey and in the world for the last 30 years. Especially for the developing countries, urbanization is a necessary fact for the sustainability of the urban growth. Yet, this growth should be controlled and planned; otherwise, many environmental problems might occur. Therefore, the urban areas having dynamic structure should be monitored periodically. Monitoring the changes in urban environment can be provided with land cover land use (LCLU) maps produced by the pixel based classification methods using ‘maximum likelihood' and ‘isodata' techniques. However, these thematic maps might bring about inaccurate classification results in heterogeneous areas especially where low spatial resolution satellite data is used since, in these approaches, each pixel is represented with only one class value. In this study, considering the spectral mixture analysis (SMA) each pixel is represented by endmember fractions. The earth is represented more accurately using 'substrate (S)', ‘green vegetation (V)' and ‘dark surfaces (D)' spectral endmember reflectances with this analysis based on linear mixture model. Here, the surrounding of Izmit Gulf, one of the most industrialized areas of Turkey, has been chosen as the study area. SMA has been applied to LANDSAT images of the years of 1984, 1999 and 2009. In addition, DMSP-OLS data of 1992, 1999 and 2009 has been used to detect urban areas. According to the results, the changes in LCLU and especially the urban growth areas have been detected accurately using the SMA method.


Human health depends on nature. This is a basic statement on which the fundaments of this book rest. Functional and diverse ecosystems, from which we derive fresh air and water, soil to grow food, timber to build houses, settings for play and recreation, are a prerequisite for human health and survival. The latest centuries’ unprecedented speed in societal and environmental changes has come to threaten the health of natural environments and by this threatening our own health. While we cannot, and should not, reverse the trend of sound development, we need to find better and healthier ways to interact with nature—in urban as well as in non-urban areas. This chapter will give a background to this book’s development and put the topic of nature and public health into a broad, outreaching context. It also presents an overview of the book’s full content, giving a brief description of each chapter.


Sign in / Sign up

Export Citation Format

Share Document