scholarly journals The Impact of Indoor Living Wall System on Air Quality: A Comparative Monitoring Test in Building Corridors

2021 ◽  
Vol 13 (14) ◽  
pp. 7884
Author(s):  
Yiming Shao ◽  
Jiaqiang Li ◽  
Zhiwei Zhou ◽  
Fan Zhang ◽  
Yuanlong Cui

Living wall systems have been widely recognized as one of the promising approaches for building applications due to their aesthetic value and ecological benefits. Compared with outdoor living wall systems, indoor living wall systems (ILWS) play a more vital role in indoor air quality. The aim of this study is to investigate the effects of ILWS on indoor air quality. In an office building, two parallel corridors were selected as comparative groups. A 10.6 m2 ILWS was installed on the sidewall of the west corridor while the east corridor was empty. Some important parameters, including indoor air temperature, relative humidity, concentrations of carbon dioxide (CO2), and particulate matter (PM) were obtained based on the actual environment monitoring. According to the statistical analysis of the data, there were significant differences in the concentrations of CO2 and PMs in the corridors with and without ILWS, which indicated that CO2 and PM2.5 removal rate ranged from 12% to 17% and 8% to 14%, respectively. The temperature difference is quite small (0.13 °C on average), while relative humidity slightly increased by 3.1–6.4% with the presence of the ILWS.

2019 ◽  
Author(s):  
Widya Nilandita ◽  
Ida Munfarida ◽  
M Ratodi ◽  
Dyah Ratri Nurmaningsih ◽  
Dedy Suprayogi

Indoor Air Quality (IAQ) is one of the critical issues in sustainable development related to human health as the primary goal. Sustainable development should address potential human exposure to pollutants and health impacts. The laboratory, as educational support in the university, has specific contaminants, but studies on IAQ and thermal comfort in the laboratory have not been studied. IAQ and thermal comfort in a laboratory are essential as they can affect the work and health of the researchers and staffs. The purpose of this study is to analyze indoor air quality in an integrated laboratory of UIN Sunan Ampel Surabaya. This research is a cross-sectional study. Data analysis was done by a quantitative descriptive method. The air quality parameters in the laboratory were temperature, relative humidity, and carbon dioxide (CO2) concentration. All settings compared to the air quality standard. The analysis on carbon dioxide (CO2) concentration, relative humidity (%RH), temperature (∘C) has shown that the indoor air does not exceed the standard according to ASHRAE standard and Health Ministry Regulation with the maximum concentration was 444,3 ppm. The fan installation and increased air filter to controlled humidity are the option to improve the indoor air quality.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


2020 ◽  
pp. 1420326X2096076
Author(s):  
Pedro F. Pereira ◽  
Nuno M. M. Ramos

In Portugal, residential buildings commonly have their ventilation strategy changed after commissioning. This occurs due to the building managers' willingness to reduce shared costs with the electricity needed for fan operation. However, this option is not technically supported, and the effects of such a strategy on indoor air quality-related to human pollutants are yet to be quantified. CO2 was monitored in 15 bedrooms and air exchange rates were calculated for each room. The air exchange rate values ranged from 0.18 to 0.53 h−1 when mechanical extraction ventilation was off, and from 0.45 to 0.90 h−1 when mechanical extraction ventilation was on, which represents an average increase of 119%. With the current intermittent ventilation strategy, all rooms remain above 1500 ppm for a given percentage of time, and 12 rooms presenting CO2 concentrations above 2000 ppm. Simulations of theoretical CO2 concentrations, for a non-interrupted mechanical ventilation strategy show that no rooms would accumulate CO2 concentrations above 2000 ppm, and only 25% would present CO2 concentrations above 1500 ppm. Pearson correlations between the monitored CO2 and human and spatial factors identified two relevant parameters. Those parameters correspond to ratios between CO2 generation and floor area ([Formula: see text]), and airflow with CO2 generation ([Formula: see text]). The proposed ratios could be used as ways to optimise ventilation costs and indoor air quality.


2018 ◽  
Vol 7 (3.9) ◽  
pp. 42
Author(s):  
Norsafiah Norazman ◽  
Adi Irfan Che Ani ◽  
Nor Haslina Ja’afar ◽  
Muhamad Azry Khoiry

Indoor Air Quality (IAQ) is an essential matter in achieving students’ satisfaction for the learning process. Building’s orientation is a factor that may encourage sufficient natural ventilation for the classroom occupants. Inadequate ventilation is an issue for most existing classrooms. The purpose of this paper is to analyze the accuracy of natural ventilation in classrooms. Therefore, experimental on 20 classrooms has been conducted by using Multipurpose Meter at secondary school buildings in Malaysia. The findings indicated that the accuracy of natural ventilation testing was below the permissible limits throughout the hours monitored, thus this may cause potential health hazards to the students. Temperature and air flow rates were lower than 23 °C and 0.15 m/s respectively, it fulfilled the basic requirements as a standard learning environment. However, measurements taken showed the overall relative humidity (RH) in the classrooms can be categorized as acceptable with 40% to 70% range. On the basis of these findings, it is evident that naturally ventilated classrooms are important especially due to energy efficiency, whereas mechanical ventilation should only be installed as an alternative under extremely hot weather conditions.   


2021 ◽  
Author(s):  
Kamrie Sarnosky ◽  
Mark Benden ◽  
Leslie Cizmas ◽  
Annette Regan ◽  
Garett Sansom

Abstract Background: The COVID-19 pandemic has accelerated an already existing trend of individuals increasingly working remotely. With the growing popularity of remote working, specifically in a home office, there is a critical need to better understand and characterize the potential environmental differences between these two spaces. Indoor air pollution can have adverse health effects and impair cognitive functioning. Methods: This small pilot cohort study (N=22) recruited home and office workers to better understand the indoor air quality between these spaces. Air contaminants collected and assessed included PM10 and PM2.5, carbon dioxide (CO2), and total volatile organic compounds (TVOCs). Results: Findings showed a strong statistically significant increase in all measured variables within homes in comparison to traditional offices (p<0.001). For instance, The mean PM2.5 level in the traditional office space was 1.93 µg/m3 whereas it was more than twice this amount (5.97 µg/m3) in home offices.Conclusion: These results indicate that those who work from home are at increased risk due to longer exposures to higher levels of certain contaminants, the importance to better develop interventions to mitigate this reality is underscored by the fact that many workers will be moving to home-based offices in the coming years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prince Junior Asilevi ◽  
Patrick Boakye ◽  
Sampson Oduro-Kwarteng ◽  
Bernard Fei-Baffoe ◽  
Yen Adams Sokama-Neuyam

AbstractNon-thermal plasma (NTP) is a promising technology for the improvement of indoor air quality (IAQ) by removing volatile organic compounds (VOCs) through advanced oxidation process (AOP). In this paper, authors developed a laboratory scale dielectric barrier discharge (DBD) reactor which generates atmospheric NTP to study the removal of low-concentration formaldehyde (HCHO), a typical indoor air VOC in the built environment associated with cancer and leukemia, under different processing conditions. Strong ionization NTP was generated between the DBD electrodes by a pulse power zero-voltage switching flyback transformer (ZVS-FBT), which caused ionization of air molecules leading to active species formation to convert HCHO into carbon dioxide (CO2) and water vapor (H2O). The impact of key electrical and physical processing parameters i.e. discharge power (P), initial concentration (Cin), flow rate (F), and relative humidity (RH) which affect the formaldehyde removal efficiency (ɳ) were studied to determine optimum conditions. Results show that, the correlation coefficient (R2) of removal efficiency dependence on the processing parameters follow the order R2 (F) = 0.99 > R2 (RH) = 0.96, > R2 (Cin) = 0.94 > R2 (P) = 0.93. The removal efficiency reached 99% under the optimum conditions of P = 0.6 W, Cin = 0.1 ppm, F = 0.2 m3/h, and RH = 65% with no secondary pollution. The study provided a theoretical and experimental basis for the application of DBD plasma for air purification in the built environment.


2018 ◽  
Vol 225 ◽  
pp. 05018
Author(s):  
Noor Huwaida Yahaya ◽  
Ftwi Yohaness Hagos ◽  
Mohamad Firdaus Basrawi

This work focuses on indoor air quality evaluation of commercial buildings in Kuantan. Some buildings have been selected to monitor indoor air quality. The research has been carried out only in Kuantan, which focused on hotels and government buildings. Some sample measurements were taken which include air temperature, relative humidity, and air movement, carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), respirable particulate matter (PM 10), formaldehyde and total volatile organic compound (TVOC). In addition, questionnaires were conducted on a number of workers in each building to determine the level of health and illness caused by air in the building where they work. Hence, this study has analyzed the link between the questioner results and the results of indoor air measurements that were carried out. From surveys, it appears there are four buildings that have low air flow, four buildings have a lot of dust and five buildings have a high temperature. In contrast, four buildings have a good indoor air quality.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Ewa Brągoszewska ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

Air pollution, a by-product of economic growth, generates an enormous environmental cost in Poland. The issue of healthy living spaces and indoor air quality (IAQ) is a global concern because people spend approximately 90% of their time indoors. An increasingly popular method to improve IAQ is to use air purifiers (APs). Indoor air is often polluted by bioaerosols (e.g., viruses, bacteria, fungi), which are a major concern for public health. This work presents research on culturable bacterial aerosol (CBA) samples collected from dwellings with or without active APs during the 2019 summer season. The CBA samples were collected using a six-stage Andersen cascade impactor (ACI). The CBA concentrations were expressed as Colony Forming Units (CFU) per cubic metre of air. The average concentration of CBA in dwellings when the AP was active was 450–570 CFU/m3, whereas the average concentration when the AP was not active was 920–1000 CFU/m3. IAQ, when the APs were active, was on average almost 50% better than in cases where there were no procedures to decrease the concentration of air pollutants. Moreover, the obtained results of the particle size distribution (PSD) of CBA indicate that the use of APs reduced the proportion of the respirable fraction (the particles < 3.3 µm) by about 16%. Life cycle assessment (LCA) was used to assess the ecological cost of air purification. Our conceptual approach addresses the impact of indoor air pollution on human health and estimates the ecological cost of APs and air pollution prevention policies.


Sign in / Sign up

Export Citation Format

Share Document