scholarly journals A Review of Cultural Background and Thermal Perceptions in Urban Environments

2021 ◽  
Vol 13 (16) ◽  
pp. 9080
Author(s):  
Sanober Naheed ◽  
Salman Shooshtarian

Thermal comfort is among the chief indicators of the sustainability of outdoor spaces. However, the complex nature of comfort represents the interaction of several determinants that leads to a perception of the thermal environment. Recently, researchers have paid particular attention to non-physical factors to understand the mechanisms involved in thermal perceptions in urban environments. The extant literature has contended that culture and cultural background are determinants to individuals’ thermal perceptions. Therefore, this study aimed to review how the link between outdoor thermal comfort (OTC) and cultural background is investigated. This is, to the best of our knowledge, the first review study on the subject. The study used a systematic literature review approach based on secondary data available in relevant and contemporary literature. The findings first showed the scarcity of research on cultural background and OTC; however, all studies identified corroborated the significant impact of cultural background on thermal perceptions. Notably, the cultural background was found to be the source of variation in thermal perceptions, tolerance to, and preference for certain thermal conditions, thermal comfort requirements and expectations, choice of clothing, and environmental attitudes. The findings provide a sound basis for future researchers to address the research gaps identified. The study also raises policy makers’ and designers’ awareness of urban environment users’ genuine needs and requirements.

Author(s):  
Farhadur Reza ◽  
◽  
Shoichi Kojima ◽  
Wataru Ando

Water bodies play a significant role in its surrounding thermal environment. Thermal comfort in university spaces is critical that affects the students’ health and performance as well as the staffs. This study investigated thermal environment and comfort near lakeside and non-lakeside tropical university spaces. Standard Effective Temperature (SET*) have been calculated using recorded air temperature, relative humidity, globe temperature, air velocity, clothing insulation and metabolic rate to evaluate the thermal comfort in outdoor and indoor spaces. The effects of weather parameters have been clearly visible on the comfort index. The calculated SET* values indicate that the outdoor thermal comfort near a lake is much closer to the standard comfort zone than non-lakeside outdoor space. In the case of indoor thermal comfort, however, slightly a different scenario has been observed. To achieve the desirable indoor thermal environment, some design considerations are recommended based on findings.


Author(s):  
Golnoosh Manteghi

Season plays a key role in the development of outdoor spaces for pedestrians in hot humid cities. This research studies the influence of seasonal variations on pedestrian thermal comfort on the pedestrian level by means of meteorology and field observations of selected footpaths in the major tourist area of Malacca. This experiment was carried out on selected clear calm days indicative of each season during the development of a research project, and hourly meteorological transects from 10:00 am to 6:00 pm and questioned 200 respondents on their thermal awareness, comfort, and preferences were conducted. Adaptation, thermal comfort vote, thermal preference, age, season and hour of the day were significant non-meteorological factors, apart from meteorological information. The findings of analyzes showed that the thermal experience and expectation existed and in different seasons people changed perceptions for the outside thermal environment. Almost 80% local tourist and 55 % international tourist was accepted Physiologically Equivalent Temperature (PET) range affected by the local climate and thermal adaptation. The subjective thermal sensation on physiological equivalent temperature generated an acceptable physiological equivalent temperature of 32.6°C to 36.8°C based on the seasonal variations for Malacca tourist zone in Malaysia. These findings shed light on the optimal design of outdoor spaces for increasing the utilization rate. The seasonal variation must be taken into account so that the outdoor landscape design provides more opportunities for different seasons to communicate with the atmosphere and so enhance thermal comfort and utilization.


2020 ◽  
Vol 11 (2) ◽  
pp. 326-341
Author(s):  
Golnoosh Manteghi ◽  
Tasneem Mostofa ◽  
Hasanuddin Bin Lamit

The present study aims to establish a correlation between the physiological equivalent temperature (PET) and subjective thermal sensation in the Tropics, assessing their impact on local as well as international pedestrians. The pilot test was conducted in six scenarios in the Malacca region of Malaysia. The RayMan model calculated the PET, which is further used to synthetically evaluate the thermal environment for six scenarios, each with a different river width and pavement material. The independent t-test and regression analysis determined the correlation between human thermal comfort acceptability and the thermal environment indices of outdoor spaces. Most of the outdoor thermal comfort assessments have been carried out focusing on local urban residents, while the same assessments on tourists are limited. This research provides necessary insight into the perception of outdoor microclimatic conditions in the Malacca heritage area and also identifies the perception on a few important psychological factors of these two demographic groups. An awareness of such issues would be fruitful for architects, planners and urban designers engaged in the process of designing and planning tourist destinations.


Author(s):  
Yuemei Zhu ◽  
Jing Liu ◽  
Yang Yao ◽  
Zuiliang Ma ◽  
Aya Hagishima ◽  
...  

In this paper, in order to predict the outdoor thermal environment, a simple multi-layer canopy model coupled with calculation of outdoor thermal comfort was developed. SET* value was used to estimate the pedestrian level of thermal comfort in the outdoor thermal environment. Preliminary verification of this model using observational data on the outdoor thermal conditions showed good results. In addition, the results show that outdoor thermal comfort is significantly different with air temperature. Except for air temperature, both solar radiation and humidity play important roles on outdoor thermal comfort.


2012 ◽  
Vol 610-613 ◽  
pp. 3780-3784 ◽  
Author(s):  
Shahab Kariminia ◽  
Sabarinah Sh Ahmad ◽  
Ibrahim Norhati

Recent rapid urban growth in major cities highlights the role of public squares, where their success can be gauged by its frequency of use and the outdoor thermal conditions. Despite the growing number of studies on outdoor thermal comfort in temperate and dry climate, those done in the Middle East are still limited. This paper examines the effects of landscape attributes on microclimatic conditions and outdoor thermal comfort based on the physiological equivalent temperature (PET) index in Esfahan, Iran. The thermal comfort prediction and correlation between thermal environment and the use of urban space were also explored. Two fieldwork studies were conducted through simultaneous environmental measurement and questionnaire survey in winter and summer at a public square in Esfahan. The obtained data became the basis for Tmrt (mean radiant temperature) and PET estimations, supported by RayMan model. The thermal environment was investigated with different landscape attributes. The derived thermal acceptable range was found to be considerably wider that those reported in previous studies. A strong correlation was confirmed between the thermal conditions and the use of outdoor spaces. The findings demonstrated the strong positive influence of air velocity and evaporative effect of water on thermal comfort. The findings contribute toward suitable design of public squares in climates similar to Esfahan.


2015 ◽  
Vol 650 ◽  
pp. 82-90 ◽  
Author(s):  
D. Kannamma ◽  
A. Meenatchi Sundaram

The climatic conditions in a man-made urban environment may differ appreciably from those in the surrounding natural or rural environs.... each urban man-made buildings, roads, parking area, factories......creates around and above it a modified climate with which it interacts [1].Outdoor thermal comfort has gained importance in thermal comfort studies especially in tropical countries. In country like India, culturally the activities are spread both indoors and outdoors. Therefore the need for ambient outdoor environment gains importance. As there are many factors that contribute to outdoor thermal comfort (climatic factors and physical factors), this study aims in analyzing the impact of building material contribution, in an institutional courtyard. In order to understand the thermal contribution of various building materials and to suggest material choice to designers, ENVIMET is used for simulation purpose. The outdoor thermal comfort index employed in this study is PET (Physiological Equivalent Temperature), calibrated using RAYMAN.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2021 ◽  
pp. 1420326X2110345
Author(s):  
Marika Vellei ◽  
William O’Brien ◽  
Simon Martinez ◽  
Jérôme Le Dréau

Recent research suggests that a time-varying indoor thermal environment can lead to energy savings and contribute to boost buildings' energy flexibility. However, thermal comfort standardization has so far considered thermal comfort criteria as constant throughout the day. In general, very little attention has been given to the ‘ time of day' variable in the context of thermal comfort research. In this paper, we show some evidence of a time-varying thermal perception by using: (1) data from about 10,000 connected Canadian thermostats made available as part of the ‘ Donate Your Data' dataset and (2) about 22,000 samples of complete (objective + ‘ right-here-right-now' subjective) thermal comfort field data from the ASHRAE I and SCATs datasets. We observe that occupants prefer colder thermal conditions at 14:00 and progressively warmer ones in the rest of the day, indistinctively in the morning and evening. Neutral temperature differences between 08:00 and 14:00 and 14:00 and 20:00 are estimated to be of the order of 2°C. We hypothesize that the human circadian rhythm is the cause of this difference. Nevertheless, the results of this study are only based on observational data. Thermal comfort experiments in controlled environmental chambers are required to confirm these findings and to better elucidate the effects of light and circadian timing and their interaction on thermal perception.


2019 ◽  
Vol 41 (5) ◽  
pp. 561-585 ◽  
Author(s):  
Fangliang Zhong ◽  
John K Calautit ◽  
Ben R Hughes

After winning the bid of the FIFA’s World Cup 2022, Qatar is facing the greatest challenges in terms of minimizing substantial energy consumptions for air-conditioning of stadiums and maintaining aero-thermal comfort for both players and spectators inside stadiums. This paper presents the results of temperature distributions and wind environment of the original stadium under the hot-humid climate and improvements on them for optimized scenarios of cooling jets. A combined computational fluid dynamics and building energy simulation approach was used to analyse the cooling performance and energy consumption per match of cooling air jets for 10 scenarios with different supply velocities, supply temperatures and locations of jets. The optimal scenario is to employ vertical jets above the upper tiers at supply temperature of 20°C and velocities of 2–12 m/s, integrated with horizontal jets of the same temperature at the lower tiers with 4 m/s and around the pitch with 7 m/s. This scenario can maintain the spectator tiers at an average temperature of 22°C and reduce the maximum predicted percentage of dissatisfied of thermal comfort from the original 100% to 63% for the pitch and 19% for the tiers, respectively. In terms of the energy consumption for the air-conditioning system per match, compared with one of the 2010 South Africa World Cup stadiums Royal Bafokeng stadium which consumed approximately 22.8 MWh energy for air-conditioning in winter (highest outdoor temperature 24.4°C), the maximum energy consumption of the optimal scenario in November (highest outdoor temperature 34.2°C) can reach 108 MWh. In addition, the spectator zones with scenario 8 have the potential to be resilient to the seasonal change of outdoor temperature if slight modifications of the supply velocities and precise temperature control on the spectator zones are applied. Moreover, the configurations presented in this paper can be used as a foundation of jets arrangement for future stadium retrofits in the hot climates. Practical application: This study assesses the aero-thermal conditions of a case study stadium under the hot climate of Qatar and explores the potential of applying cooling jets with different supply velocities, supply temperatures and their locations on the enhancement of both thermal and wind environment of spectator tiers and pitch. The assessment of the original stadium indicates that the ascending curved roof structure impedes the fresh air entering into the stadium and results in an asymmetric temperature distribution on the spectator tiers. The optimized design suggests a combination of vertical jets under the roof and both three arrays of horizontal jets at lower tiers and around pitch for future stadium optimizations in hot climates. It also recommends enhancing the thermal conditions on the pitch by optimizing the velocity of horizontal jets around the pitch. Moreover, the future design of the exact stadiums to be resilient to the seasonal changing outdoor temperature can be implemented based on scenario 8.


Author(s):  
Zheming Liu ◽  
Yumeng Jin ◽  
Hong Jin

In the context of global climate change and accelerated urbanization, the deterioration of the urban living environment has had a serious negative impact on the life of residents. However, studies on the effects of forms and configurations of outdoor spaces in residential areas on the outdoor thermal environment based on the particularity of climate in severe cold regions are very limited. Through field measurements of the thermal environment at the pedestrian level in the outdoor space of residential areas in three seasons (summer, the transition season and winter) in Harbin, China, this study explored the effects of forms and configurations of three typical outdoor spaces (the linear block, the enclosed block, and the square) on the thermal environment and thermal comfort using the Physiologically Equivalent Temperature (PET). The results show that the thermal environment of all outdoor space forms was relatively comfortable in the transition season but was uncomfortable in summer and winter. The full-enclosed block with a lower sky view factor (SVF) had a higher thermal comfort condition in summer and winter. The linear block with higher buildings and wider south–north spacing had a higher thermal comfort condition in summer and winter. When the buildings on the south side were lower and the south–north spacing was wider, the thermal environment of the square was more comfortable in winter.


Sign in / Sign up

Export Citation Format

Share Document