scholarly journals Towards Sustainable Farm Production System: A Case Study of Corn Farming

2021 ◽  
Vol 13 (16) ◽  
pp. 9243
Author(s):  
Adnan Abbas ◽  
Chengyi Zhao ◽  
Waheed Ullah ◽  
Riaz Ahmad ◽  
Muhammad Waseem ◽  
...  

Many recent studies show that most of the crop production systems in developing countries are not environmentally sustainable. This study uses the life cycle assessment (LCA) to investigate the potential impacts of corn production in Pakistan on global warming and human health damages and also suggests mitigation strategies to reduce environmental impacts towards sustainable crop production based on the results. Land-based, mass-based, and energy-based functional units were used. IMPACT 2002+ methodology—a combination of IMPACT 2002, Eco-Indicator 99, CML, and intergovernmental panel on climate change (IPCC)—is used for the impact assessment. The results demonstrated that the global warming potential of one-ton production of corn, one-hectare corn farm, and production of 1000 MJ energy were 354.18, 34,569.90, and 1275.13 kg CO2 equivalents, respectively. The off-farm and on-farm emissions of nitrogen-based chemical fertilizers were the hotspots in the most impact categories. Moreover, human health damages followed by global warming as environmental externalities were also associated with corn production. We also highlighted the production areas with light, medium and extreme environmental externalities with Toba Tek Singh and Okara districts in the Punjab province of Pakistan being the most and least contributing districts towards global warming, respectively. Results further indicated that a 5 to 100% reduction of chemical fertilizers would mitigate the environmental impacts of corn production by 4.38 to 87.58% and 2.16 to 43.30% in terms of aquatic acidification and global warming, respectively. Modern farming systems and conservation technologies were suggested to reduce emissions and improve the environmental performance of corn production. Furthermore, agricultural extension and the ministry of agriculture should pay more attention to farmers’ education on emissions from farming inputs and their impact on climate.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2014 ◽  
Vol 2014 ◽  
pp. 1-52
Author(s):  
Bin Mushambanyi Théodore Munyuli

A study was conducted from 2010 to 2012 around the flower growing areas in central Uganda to generate baseline information on the status of pollinators. Primary data were gathered using a questionnaire that aimed at determining farmers and flower farm officials’ perceptions on the impact of activities carried out inside greenhouses on pollinators, human health, and on crop production in the surroundings. Results indicated that the quantity of pesticides and fertilizers applied daily varied among the different flower farms visited. Bee species richness and abundance varied significantly (P<0.01) according to flower farm location, to the landscape vegetation type, and to field types found in the surrounding of flower farms. Bee richness found around flower farms varied in number from 20 to 40 species in total across seasons and years. Bee density increased significantly with the increase in flower density. Small-scale farmers were aware of the value and importance of pollination services in their farming business. There was no clear evidence of a direct effect of agrochemicals application on bee communities living in the surrounding habitats. There is a need for further research to be conducted on human health risks and for toxicological studies on soils, plants, flowers, and bees in the farm landscape.


2017 ◽  
Vol 11 (7) ◽  
pp. 348-353
Author(s):  
Chloe Griggs ◽  
Ana Fernandez ◽  
Margie Callanan

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2444
Author(s):  
Federica Savini ◽  
Federica Giacometti ◽  
Federico Tomasello ◽  
Marta Pollesel ◽  
Silvia Piva ◽  
...  

In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.


1995 ◽  
Vol 75 (1) ◽  
pp. 61-68 ◽  
Author(s):  
A. Touré ◽  
D. J. Major ◽  
C. W. Lindwall

Increasing concentrations of greenhouse gases are expected to result in global warming which will affect crop production. Crop modelling is a useful tool for assessing the impact of climate change on crop production. The objective of this study was to select an appropriate model for climate change studies. Five simulation models, EPIC, CERES, Century, Sinclair and Stewart, were assessed using data from a long-term experiment begun in 1911 on a clay loam (Dark Brown Chernozem) soil at Lethbridge, AB. Yields predicted by the five models were compared with actual spring wheat yields in continuous wheat, fallow-wheat and fallow-wheat-wheat rotations. The EPIC model gave the best simulation results over all rotations and the most accurate predictions of mean yields during droughts. It was concluded that the EPIC model had the greatest potential for assessing the impact of climate change on wheat yield. The Stewart model was the most accurate for unfertilized continuous wheat and fallow-wheat. The Sinclair model was most accurate for fertilized fallow-wheat and CERES was the most accurate model for fertilized continuous wheat. The Century model simulated average yield accurately but did not account for year-to-year variability. Key words: Global warming, crop simulation, spring wheat yields


Author(s):  
Anna Podlasek ◽  
Eugeniusz Koda ◽  
Magdalena Daria Vaverková

The soil and human health issues are closely linked. Properly managed nitrogen (N) does not endanger human health and increases crop production, nevertheless when overused and uncontrolled, can contribute to side effects. This research was intended to highlight that there is a need for carrying out monitoring studies in agricultural areas in order to expand the available knowledge on the content of N forms in agricultural lands and proper management in farming practice. The impact of two types of fertilization, concerning spatially variable (VRA) and uniform (UNI) N dose, on the distribution of N forms in soils was analyzed. The analysis was performed on the basis of soil monitoring data from agricultural fields located in three different experimental sites in Poland. The analyses performed at selected sites were supported by statistical evaluation and recognition of spatial diversification of N forms in soil. It was revealed that the movement of unused N forms to deeper parts of the soil, and therefore to the groundwater system, is more limited due to VRA fertilization. Finally, it was also concluded that the management in agricultural practice should be based on the prediction of spatial variability of soil properties that allow to ensure proper application of N fertilizers, resulting in the reduction of possible N losses.


2022 ◽  
Vol 08 (01) ◽  
Author(s):  
Elnura Iskandarovna Hamdamova ◽  

In this article is considered the role of legumes in improving the ecological state of the soil and the problem of developing energy-efficient, inexpensive, biologically and environmentally clean production technologies for crop production. The use of valuable chemical fertilizers and pesticides in order to obtain high yields from crops increases the pollution of the environment, ie soil, air and groundwater, the products contain nitrates, herbicides, fungicides, insecticides, residues harmful to human health.


Author(s):  
Cécile Bessou ◽  
Lénaïc Pardon

Quantifying the environmental impact of production systems has become a milestone for agricultural commodity chains. Life Cycle Assessment (LCA) is a unique ISO standardized methodology for estimating the environmental impact of human activities along a commodity chain. In the last decade, LCA has become the worldwide standard for environmental product declarations and the baseline model behind various GHG calculators and certifications (e.g. European Directive 2009; RSPO PalmGHG 2012). Various LCA on palm oil products have shown that the agricultural stage is a major contributor to most of the potential environmental impacts, including global warming, eutrophication and acidification for instance. This large contribution is due to combined important nitrogen (N) input levels in the field and low input levels at the mill and refinery stages. The agricultural stage remains a critical contributor even when the system boundary is extended to palm-based biofuel production. Focusing on global warming impact, main contributors are N-related GHG emissions in the plantation and methane emissions from palm oil mill effluent treatment. The impact from the plantation becomes overwhelming when forests or peatland areas are converted to palm plantations. Meanwhile, impact from palm oil mill effluent can be drastically reduced if the biogas is captured with electricity recovery. While nitrogen inputs are critical, LCA models still mostly rely on global emission factor. A better modeling of the nitrogen balance including a better accounting for soil processes would allow for a more accurate diagnosis of environmental impacts and control levers in plantation management.


2009 ◽  
Vol 4 (4) ◽  
pp. 217-225 ◽  
Author(s):  
John J. Wassel, MD, MHS(c)

Objective: To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact.Design: Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as “global warming,” “climate change,” “human health,” “public health,” and “preparedness.”Results: Sixty-seven journal articles were reviewed.Conclusions: The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations.We must begin “greening” our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.


Sign in / Sign up

Export Citation Format

Share Document