scholarly journals Correlating Genetically Modified Crops, Glyphosate Use and Increased Carbon Sequestration

2021 ◽  
Vol 13 (21) ◽  
pp. 11679
Author(s):  
Chelsea Sutherland ◽  
Savannah Gleim ◽  
Stuart J. Smyth

In the early 1990s, tillage was the leading form of weed control, with minimum/zero-tillage management practices incapable of long-term continuation. Presently, weed control through tillage has virtually disappeared as cropland management systems have transitioned largely to continuous cropping, with zero to minimal soil disturbance. Research was undertaken to examine what was driving this land management transition. A carbon accounting framework incorporating coefficients derived from the Century Model was used to estimate carbon sequestration in the Canadian province of Saskatchewan. The results quantify the transition from farmland being a net carbon emitter to being a net carbon sequesterer over the past 30 years. This evidence confirms the correlation between genetically modified, herbicide-tolerant crops and glyphosate use is a driver of the increased soil carbon sequestration. The removal of tillage and adoption of minimal soil disturbances has reduced the amount of carbon released from tillage and increased the sequestration of carbon through continuous crop production. Countries that ban genetically modified crops and are enacting legislation restricting glyphosate use are implementing policies that Canadian farm evidence indicates will not contribute to increasing agricultural sustainability.

2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 615 ◽  
Author(s):  
W. E. Cotching ◽  
G. Oliver ◽  
M. Downie ◽  
R. Corkrey ◽  
R. B. Doyle

The effects of environmental parameters, land-use history, and management practices on soil organic carbon (SOC) concentrations, nitrogen, and bulk density were determined in agricultural soils of four soil types in Tasmania. The sites sampled were Dermosols, Vertosols, Ferrosols, and a group of texture-contrast soils (Chromosol and Sodosol) each with a 10-year management history ranging from permanent perennial pasture to continuous cropping. Rainfall, Soil Order, and land use were all strong explanatory variables for differences in SOC, soil carbon stock, total nitrogen, and bulk density. Cropping sites had 29–35% less SOC in surface soils (0–0.1 m) than pasture sites as well as greater bulk densities. Clay-rich soils contained the greatest carbon stocks to 0.3 m depth under pasture, with Ferrosols containing a mean of 158 Mg C ha–1, Vertosols 112 Mg C ha–1, and Dermosols 107 Mg C ha–1. Texture-contrast soils with sandier textured topsoils under pasture had a mean of 69 Mg C ha–1. The range of values in soil carbon stocks indicates considerable uncertainty in baseline values for use in soil carbon accounting. Farmers can influence SOC more by their choice of land use than their day-to-day soil management. Although the influence of management is not as great as other inherent site variables, farmers can still select practices for their ability to retain more SOC.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


2022 ◽  
pp. 264-271
Author(s):  
Graham Matthews

Abstract This chapter focuses on different management practices in growing cotton, including the use of genetically modified varieties, pesticide application, crop rotation, spacing, irrigation, weed control, integrated pest management and organic farming.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


2014 ◽  
Vol 60 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Vladimír Šimanský ◽  
Peter Kováčik

Abstract Sequestration of organic carbon in soils is an effective strategy to mitigate global climate change. Carbon sequestration leads to an increase in carbon stocks in soil, thereby reducing greenhouse gas emissions while improving soil quality and crop production. There are several published articles containing information in which the authors explain carbon sequestration in different soil types under different climatic conditions or farming systems, but on the other hand there is less information about carbon sequestration in water-stable aggregates. In field experiment, the manner in which different soil management practices influence carbon sequestration and its dynamics in water-stable aggregates was studied. We evaluated the soil samples taken from Haplic Luvisol (Dolná Malanta - Slovakia) from all treatments of tillage (conventional, minimal and grassland) and fertilisation (without fertilisation, crop residues together with NPK fertilisers and only NPK fertilisers). The maintenance of carbon concentration within soil under conventional tillage and in native grassland was due to an enhanced incorporation of new organic matter from the coarse fraction of particulate organic matter to macro-aggregates and in treatment with ploughed crop residue together with NPK fertilisers, there was besides of this caused by the reduction of carbon mineralisation from the fine fraction. Soil management practices have a significant effect on the re-distribution of soil organic matter in water-stable aggregates. In conventional and minimal tillage, very important sources of carbon sequestration are agronomical favourable size fractions of water-stable macro-aggregates and in native grassland, as well as in all fertiliser treatments, the most important source of carbon sequestration is water-stable micro-aggregates.


Global Jurist ◽  
2011 ◽  
Vol 11 (2) ◽  
Author(s):  
Alessandro Chiarabolli

The objective of the research is to analyse the way the European Union is addressing the issue of the coexistence between traditional, organic, and GM crops.In the European Union no form of agriculture, whether conventional, organic, GM, should be excluded. Farmers are free to choose the production type they prefer, without being forced to change patterns already established in the area, and without spending more resources.Today EU rules on genetically modified crops are very rigid; in particular, before starting a GM crops commercial cultivation, it is compulsory to obtain a specific European Commission authorisation (based on a safety risk assessment carried out by the European Food Safety Authority), and GM food and feed (threshold 0,9%) must be labeled (to inform consumers) and traced.Coexistence is the weak point of the European legislation in the field. The European Commission defines the term coexistence as the farmers’ ability to make a practical choice between conventional, organic and GM-crop production, in compliance with the legal obligations for labeling and/or purity standards. In simple terms, coexistence is a way of allowing farmers to choose between the three agricultural systems. Farmers’ choice to grow GM or non-GM crops depends not only on technical aspects related to the productivity gains and agronomic benefits to be gained from adopting this technology, but also on consumers’ preferences. Particularly in Europe, consumers continue to be concerned about the potentially adverse implications of widespread GM crop production for the environment and food safety. According to Directive 2001/18/EC (Article 26 bis), Member States may organise measures to avoid the unadventitious presence of GMOs in other non-GM products. In order to help the Member States to organise national coexistence measures, the European Commission adopted the Recommendation 2003/556/EC on the guidelines for the development of national strategies and best practices to ensure the coexistence of genetically modified crops with conventional and organic farming. The act establishes that the approaches to coexistence need to be developed in a transparent way, based on technical guidelines and in co-operation with all stakeholders concerned. The guidelines are based on experiences with existing segregation practices and, at the same time, they ensure an equitable balance between the interests of farmers of all production types. Further, they state that management measures to ensure coexistence should be efficient and cost-effective, without going beyond what is necessary to comply with EU threshold levels for GMO labeling. Today it is accepted that total isolation of GM material, certainly once agricultural biotechnology is widespread in the EU, is impossible; coexistence focuses on the practices used to decrease the adventitious GM presence. The implementation of coexistence measures is a complex process owing to the diversity in field, farming and natural conditions extending over Europe.On 13 July 2010, the European Commission adopted a new coexistence package that consists of a coexistence Communication, a new Recommendation on co-existence of GM crops with conventional and/or organic crops, and a draft Regulation proposing a change to the GMO legislation. The new approach aims to achieve the right balance between maintaining an EU authorisation system and the freedom for Member States to decide on GMO cultivation in their territory. The new flexible European scenario will give to the Member States the possibility to decide whether to cultivate biotech crops, maintaining at the same time an EU wide science-based authorization system.


2020 ◽  
Vol 7 (1) ◽  
pp. 70-92
Author(s):  
Nirmala Nalluri ◽  
Vasavi Rama Karri

Continuous increase in world’s population demands high food production, which has become a major challenge to the humanity. When there is sufficient amount of nutritious food to all the people there will be no problem of food scarcity. So, to increase the food production, many countries are adopting strategies of genetic engineering to enhance the crop yield. Recombinant DNA technology can be a viable source to develop genetically modified crops with enhanced resistance and improved yields to fight against malnutrition and food scarcity. With this technology, selected traits can be inserted into the plant genome, unlike traditional plant breeding, where many characters of two different crops will be combined which may lead to genetic modification at an extensive level. Present review focuses on the methods of plant transformation and outlines the scope of genetic transformation for improved crop production by transferring selected genes for biotic and abiotic stress tolerance. In addition, current study also provides information about various genetically modified crops produced worldwide and their commercialization towards various biotechnological products like GM livestock, GM microorganisms, vaccines and industrial products like bio-plastic produced from the transgenic plants.


2020 ◽  
Author(s):  
Fei Lu ◽  
Guo Zhang ◽  
Weiwei Liu ◽  
Bojie Liu ◽  
Hong Zhao ◽  
...  

<p>Many management practices in cropland, forest and grassland ecosystems can extend forest area, increase carbon input or prevent C loss from vegetation and soil, and subsequently enhance C sinks and stocks. These management practices are considered as promising carbon sequestration measures. However, during implementation of these measures, the production, transportation and consumption of corresponding materials (such as synthetic fertilizers) and fossil fuel, the additional trace GHG emissions, and the processes taking place elsewhere as a result of the implementation activities may lead to GHG budget change other than the carbon stock, and form GHG leakage. Consequently, in order to reveal the true contribution of these practices to global warming mitigation and GHG reduction, full GHG budget need to be considered rather than the impact on soil and vegetation carbon alone. We built the frame of “Carbon Accounting and Net Mitigation (CANM)” and serious of CANM methods to investigate the GHG leakage and net mitigation of typical carbon sequestration practices in China's terrestrial ecosystem, including China’s national ecological restoration projects, and forest, cropland and grassland managements. The results showed large variations in carbon contributions, GHG leakages and their counteraction effects among different practices and ecosystems. The counteraction effects of GHG leakage from forest management and some forest-related ecological restoration projects were relatively small and could hardly exceed 25%. Meanwhile, the GHG leakage of some cropland management practice (e.g., straw return in rice paddies) could fully offset the carbon sequestration in soil. But reduction of synthetic fertilizer application in accordance with the national fertilization recommendations might own considerable net GHG mitigation potential. Grazing prohibition could sequester carbon in grassland ecosystem, but the transfer of grazing activity could offset about half of the carbon sequestration effect. Therefore, policies and technical approaches to minimize GHG leakage are necessary to enhance the GHG mitigation effect of the ecosystem carbon sequestration practices.</p>


Sign in / Sign up

Export Citation Format

Share Document