scholarly journals Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis

2022 ◽  
Vol 14 (2) ◽  
pp. 718
Author(s):  
Roman V. Gordeev ◽  
Anton I. Pyzhev ◽  
Evgeniya V. Zander

Agriculture is one of the economic sectors primarily affected by climate change. This impact is very uneven, especially for countries with large territories. This paper examines the contribution of climate change to the improvement in agricultural productivity in Russia over the past two decades. Several ensembles of fixed effects regressions on yields and gross harvests of grain, fruits, and berries, potato, and vegetables were evaluated for a sample of 77 Russian regions over the 2002–2019 period. In contrast to similar studies of the climate impact on Russian agriculture, we considered a larger set of variables, including both Russian and global climate trends, technological factors, and producer prices. Russian weather trends such as winter softening and increase in summer heat have a significant but opposite effect on yields. An interesting finding is a significant and mostly positive influence of global climatic variables, such as the CO2 concentration, El Niño and La Niña events on both harvests and yields. Although technological factors are the main drivers of growth in Russian agricultural performance over the past 20 years, we found a strong positive effect on yield and gross harvest only for mineral fertilizers. The influence of the other variables is mixed, which is mainly due to data quality and aggregation errors.

2019 ◽  
Vol 4 (4) ◽  
pp. 270-284
Author(s):  
Walaa Mahrous

Purpose This study aims to analyze the impact of global climate change on food security in the East African Community (EAC) region, using panel data analysis for five countries, over 2000-2014. Design/methodology/approach The determinants of food security are expressed as a function of rainfall, temperature, land area under cereal production, and population size. The paper used pooled fixed effects to estimate the relationship among these variables. Findings Findings show that food security in EAC is adversely affected by temperature. However, precipitation and increasing areas cultivated with cereal crops will be beneficial to ensure everyone's food security. Originality/value Actions for mitigating global warming are important for EAC to consolidate the region’s economic, political and social development/stability.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2021 ◽  
Vol 901 (1) ◽  
pp. 012047
Author(s):  
S I Kostenko ◽  
E Z Shamsutdinova ◽  
M Yu Novoselov ◽  
Yu M Piskovatsky ◽  
Yu S Tyurin

Abstract In Russian agriculture, fodder crops play a huge role as a source of complete feed for animals and as the main factor in the greening of all agriculture. It is fodder crops that are the main factors for increasing the humus content in soils, as the main indicator of their fertility, it is they who can most successfully fight wind and water erosion, it is they who most successfully of all agricultural crops can grow on the poorest and most problematic soils (saline, arid, waterlogged, etc.) being pioneers for the cultivation of basic food crops. This predetermines the primary role of forage crops in responding to climate change throughout Eurasia. In the past periods of history, global climate change led to major social shocks precisely because of a sharp decline in agricultural production, crop failures, and even a subsequent decline in population in individual countries [1]. Timely response to such changes by creating varieties adapted to new limiting environmental factors will not only successfully overcome the expected crisis, but also benefit from such a change. In addition to using traditional methods, great hopes are pinned on the widespread use of modern genetic technologies, biochemical and physiological methods, methods of cell and tissue culture.


Author(s):  
David G. Anderson ◽  
Kirk A. Maasch

As the twenty-first century winds onward, it is becoming increasingly clear that understanding how climate affects human cultural systems is critically important. Indeed, it has been argued by many researchers that how we respond to changing global climate is one of the greatest scientific and political challenges facing our planetary technological civilization, comparable and closely intertwined with concerns about biological or nuclear warfare, famine, disease, overpopulation, or environmental degradation. By any reasonable evaluation of the evidence, this century, and likely the several centuries that follow it, will be characterized by dramatic climate change, perhaps as significant in terms of its impact on our species as any climatic episodes that have occurred in the past. What we don’t know with much certainty is how these environmental changes will play out across the planet, and how individuals as well as nation states will respond to them. Archaeology has a major role to play in helping us move through this period of crisis, however, by showing us how human cultures in the past responded to dramatic changes in climate. As the work of many archaeological scholars has shown, climate change has not invariably proven to be a bad thing: it is how people respond to it that is critical (e.g. Anderson et al. 2007b; Cooper and Sheets 2012; Crumley 2000, 2006, 2007; Hardesty 2007; McAnany and Yoffee 2010; McIntosh et al. 2000; Redman 2004a; Sandweiss and Quilter 2008; Sassaman and Anderson 1996; Tainter 2000). Archaeology working in tandem with a host of palaeoenvironmental and historical disciplines has lessons for our modern world and, as this volume demonstrates, we as a profession are making great strides in getting our message out. Perhaps the most important lesson from the past is that people, through their actions, are the drivers of cultural change, including response to climate change. Societies are not, however, monolithic entities that ‘chose’ to succeed or fail; people as individuals, groups, or factions through their actions generate outcomes, and often some demonstrate remarkable flexibility and resilience (Cooper and Sheets 2012; Diamond 2005; McAnany and Yoffee 2010).


2017 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our study, based on the GEOS-Chem model simulation, shows that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosols lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequency in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the precipitation changes over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


2019 ◽  
Vol 276 ◽  
pp. 04003
Author(s):  
I Wayan Sutapa ◽  
Muhammad Galib Ishak ◽  
Vera Wim Andiese

Global Climate change has been discussed in the High-Level Conference in Rio de Janeiro, Brazil in 1992 and has given more impacts in the world. One of the global climate exchanges is the rising of intensity and frequency of climate extreme which included drought, flood, and hurricane. The objective of this study was to investigate the effects of climate change on evapotranspiration and rainfall for river water discharge of Rawa. The investigation has been carried out using daily data and analyzed on a daily, monthly and yearly. The rain stations that represent the location of this research are Palolo, Kulawi, and Wuasa. Climatological station nearest to the research station used Bora. Climate trends and projected changes in the method of Makesens analysis (Mann-Kendall, Sens) and the correlation of rainfall and evapotranspiration discharge used linear regression equation. Similarly, the correlation between changes in soil water storage with rainfall, evapotranspiration, and discharge was analyzed in a linear manner. The conclusion of this study is the climate changes in the River of Rawa watershed was characterized by slowly increasing temperature, increasing rainfall, and decreasing discharge.


2020 ◽  
Vol 82 (8) ◽  
pp. 553-559
Author(s):  
Medelin Kant ◽  
Julie Angle ◽  
William M. Hammond ◽  
Henry D. Adams

Climate change is causing widespread forest mortality due to intensified drought conditions. In light of a dynamically changing planet, understanding when forest die-off will occur is vital in predicting forest response to future climate trends. The Environmental Ecology Lab studies plant physiological response to drought stress to determine the lethal level of drought for pinyon pine. This drought research inspired this high school biology lesson, which addresses the NGSS Performance Expectation HS-LS4-6. Students engage in a climate change discussion regarding the devastation of California wildfires. Ongoing research in the lab is then introduced, leading students to design their own drought experiment using radish plants. Students determine an effective drought detector as a solution to mitigate human-induced climate change. Experimental data are statistically tested using R, to determine the effectiveness of drought detectors. To place their observations in a global context, students research the NASA Global Climate Change website to provide evidence to support their claim of human-induced climate change and relate this to a reduction in biodiversity. In a final presentation, groups share their most effective physiological measurement and propose potential applications of drought detection in mitigating adverse impacts of climate change.


Author(s):  
Alice Vilela

In recent years, wine consumers have been looking for fruitier wines, with less ethanol, but presenting a good balance in terms of mouthfeel. However, due to the effects of global climate change, wines can be more alcoholic and flatter in terms of acidity. If in the past, non-Saccharomyces yeasts were often considered as spoilage yeasts, now they are used to modulate wine composition, namely in terms of aroma and acidity. In this article, the ability of some non-Saccharomyces yeasts to modulate wine acidity is reviewed.


2013 ◽  
Vol 13 (10) ◽  
pp. 26001-26041 ◽  
Author(s):  
J. Yoon ◽  
J. P. Burrows ◽  
M. Vountas ◽  
W. von Hoyningen-Huene ◽  
D. Y. Chang ◽  
...  

Abstract. Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about −40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.


Sign in / Sign up

Export Citation Format

Share Document