scholarly journals Effect of Plastic Anisotropy on the Collapse of a Hollow Disk under Thermal and Mechanical Loading

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 909
Author(s):  
Elena Lyamina

Plastic anisotropy significantly affects the behavior of structures and machine parts. Given the many parameters that classify a structure made of anisotropic material, analytic and semi-analytic solutions are very useful for parametric analysis and preliminary design of such structures. The present paper is devoted to describing the plastic collapse of a thin orthotropic hollow disk inserted into a rigid container. The disk is subject to a uniform temperature field and a uniform pressure is applied over its inner radius. The condition of axial symmetry in conjunction with the assumption of plane stress, permits an exact analytic solution. Two plastic collapse mechanisms exist. One of these mechanisms requires that the entire disk is plastic. According to the other mechanism, plastic deformation localizes at the inner radius of the disk. Additionally, two special solutions are possible. One of these solutions predicts that the entire disk becomes plastic at the initiation of plastic yielding (i.e., plastic yielding simultaneously initiates in the entire disk). The other special solution predicts that the plastic localization occurs at the inner radius of the disk with no plastic region of finite size. An essential difference between the orthotropic and isotropic disks is that plastic yielding might initiate at the outer radius of the orthotropic disk.

2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Yeau-Ren Jeng

A semi-analytic solution for plastic collapse of a thin annular disk subject to thermomechanical loading is presented. It is assumed that the yield criterion depends on the hydrostatic stress. A distinguished feature of the boundary value problem considered is that there are two loading parameters. One of these parameters is temperature and the other is pressure over the inner radius of the disk. The general qualitative structure of the solution at plastic collapse is discussed in detail. It is shown that two different plastic collapse mechanisms are possible. One of these mechanisms is characterized by strain localization at the inner radius of the disk. The entire disk becomes plastic according to the other plastic collapse mechanism. In addition, two special regimes of plastic collapse are identified. According to one of these regimes, plastic collapse occurs when the entire disk is elastic, except its inner radius. According to the other regime, the entire disk becomes plastic at the same values of the loading parameters at which plastic yielding starts to develop.


Geophysics ◽  
1979 ◽  
Vol 44 (8) ◽  
pp. 1464-1464
Author(s):  
J. R. Hearst ◽  
R. C. Carlson

Our equations (3) and (4) are correct. They represent the difference between the attraction of the shell viewed from [Formula: see text], the outer radius of the shell, and [Formula: see text], its inner radius. (The attraction of the shell viewed from [Formula: see text] is zero.) On the other hand, equations (5) and (6) of Fahlquist and Carlson represent the difference in attraction of the entire earth from the same viewpoints and thus, as they say, include a free‐air gradient term. However, their equation (5) would be correct only if the mean density of the earth were equal to that of the shell, and the free‐air gradient obtained by their equation (10) is correct only under these circumstances.


Author(s):  
G Sanjurjo-Ferrín ◽  
J M Torrejón ◽  
K Postnov ◽  
L Oskinova ◽  
J J Rodes-Roca ◽  
...  

Abstract Cen X-3 is a compact high mass X-ray binary likely powered by Roche lobe overflow. We present a phase-resolved X-ray spectral and timing analysis of two pointed XMM-Newton observations. The first one took place during a normal state of the source, when it has a luminosity LX ∼ 1036 erg s−1. This observation covered orbital phases φ = 0.00 − 0.37, i.e. the egress from the eclipse. The egress lightcurve is highly structured, showing distinctive intervals. We argue that different intervals correspond to the emergence of different emitting structures. The lightcurve analysis enables us to estimate the size of such structures around the compact star, the most conspicuous of which has a size ∼0.3R*, of the order of the Roche lobe radius. During the egress, the equivalent width of Fe emission lines, from highly ionized species, decreases as the X-ray continuum grows. On the other hand, the equivalent width of the Fe Kα line, from near neutral Fe, strengthens. This line is likely formed due to the X-ray illumination of the accretion stream. The second observation was taken when the source was 10 times X-ray brighter and covered the orbital phases φ = 0.36 − 0.80. The X-ray lightcurve in the high state shows dips. These dips are not caused by absorption but can be due to instabilities in the accretion stream. The typical dip duration, of about 1000 s, is much longer than the timescale attributed to the accretion of the clumpy stellar wind of the massive donor star, but is similar to the viscous timescale at the inner radius of the accretion disk.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
T. Steglich ◽  
J. Kitzinger ◽  
J. R. Seume ◽  
R. A. Van den Braembussche ◽  
J. Prinsier

Internal volutes have a constant outer radius, slightly larger than the diffuser exit radius, and the circumferential increase of the cross section is accommodated by a decrease of the inner radius. They allow the design of compact radial compressors and hence are very attractive for turbochargers and high-pressure pipeline compressors, where small housing diameters have a favorable impact on weight and cost. Internal volutes, however, have higher losses and lower pressure rise than external ones, in which the center of the cross sections is located at a larger radius than the diffuser exit. This paper focuses on the improvement of the internal volute performance by taking into account the interaction between the diffuser and the volute. Two alternative configurations with enhanced aerodynamic performance are presented. The first one features a novel, nonaxisymmetric diffuser̸internal volute combination. It demonstrates an increased pressure ratio and lower loss over most of the operating range at all rotational speeds compared with a symmetric diffuser̸internal volute combination. The circumferential pressure distortion at off design operation is slightly larger than in the original configuration with a concentric vaneless diffuser. Alternatively, a parallel-walled diffuser with low-solidity vanes and an internal volute allows a reduction of the unsteady load on the impeller and an improved performance, approaching that of a vaneless concentric diffuser with a large external volute.


1972 ◽  
Vol 39 (4) ◽  
pp. 1143-1144 ◽  
Author(s):  
S. Barasch ◽  
Y. Chen

The equation of motion of a rotating disk, clamped at the inner radius and free at the outer radius, is solved by reducing the fourth-order equation of motion to a set of four first-order equations subject to arbitrary initial conditions. A modified Adams’ method is used to numerically integrate the system of differential equations. Results show that Lamb-Southwell’s approximate calculation of the frequency is justified.


2020 ◽  
Vol 21 (3) ◽  
pp. 208-214
Author(s):  
Mathieu Gil-oulbé ◽  
Aleksey S. Markovich ◽  
Prosper Ngandu ◽  
Svetlana V. Anosova

From the old ancient types of roof and dome construction, various forms of shells have been discovered which attract special attention. A shell is a structure composed of sheet material so that the curvature plays an important role in the structural behaviour, realizing its spatial form. There are different types of shells, namely thick and thin shells. G. Brankov, S.N. Krivoshapko, V.N. Ivanov, and V.A. Romanova made interesting researches of shells in the form of umbrella and umbrella-type surfaces. The term nonlinear refers to a given structure undergoing a change in stiffness in its loaded state. There are basically three different types of nonlinearities: geometric, physical and contact (boundary condition nonlinearity). For further analysis of the stress-strain state, a paraboloid with an inner radius of 4 m and an outer radius of 20 m and the number of waves equal to 6 was considered. The test shell is made of reinforced concrete. The minimum load parameter at which the shell loses stability indicates a more than three times the margin.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Eka Taufiq Firmansjah

ABSTRAK Mesin terdiri dari sekumpulan elemen mesin yang diam dan bergerak. Elemen mesin yang bergerak dengan gerakan berputar disebut benda putar. Pada beberapa kasus seringkali diinginkan pengurangan massa dari benda putar tersebut untuk alasan ekonomis, biasanya untuk elemen mesin yag diproduksi massal. Namun pengurangan massa berakibat pada pengurangan momen inersia massa benda putar bersangkutan. Jika tuntutan perancangan tidak mempermasalahkan perubahan tersebut, maka pengurangan massa tidak menjadi masalah. Namun jika momen inersia massa tidak boleh terlalu rendah, maka harus dicari kompromi dimana pengurangan massa sebesar-besarnya namun penurunan momen inersia massa sekecil-kecilnya. Pada penelitian ini dilakukan studi kasus terhadap benda putar berjari- jari 10 cm jari-jari dalam hub 2 cm dan jari-jari luar hub 4 cm. Jumlah jari-jari ada 4 dengan lebar 1 cm dan tebal benda putar 0,5 cm. Variasi pengurangan massa dilakukan dengan memvariasikan jari-jari- dalam rim. Untuk tiap variasi, dilakukan perhitungan untuk mendapatkan jumlah massa yang dapat dikurangi dan momen inersia massa dari benda putar. Ternyata pada nilai jari-jari dalam tertentu, dapat diperoleh nilai kompromi dari permasalahan diatas. Kata kunci: benda putar, penghematan bahan, momen inersia massa.  ABSTRACT Machine consists of a set of machine elements that still and moving. Machine elements that move in a circular motion called rotary object. In some cases it is often desirable reduction in the mass of the rotating object for economic reasons, usually for a mass production of machine elements. But the mass reduction results in a reduction in moment of inertia of the mass. If the demands of the design allow this decrease of moment of inertia, mass reduction is not a problem. But if the moment of inertia of the masses should not be too low, it must find a compromise in which a mass reduction profusely but the decrease in the mass moment of inertia of the smallest. In this research conducted a case study of rotating element radius of 10 cm, radius of the hub 2 cm and outer radius hub 4 cm. The number of spoke are 4 with a width of 1 cm and uniform thickness 0.5 cm all over rotating element. Variations mass reduction is done by varying the inner radius of the rim. For each variation, calculation is performed to obtain the amount of mass that can be reduced and the mass moment of inertia of the rotating object. It turned out that in the certain value of inner radius of the rim in particular, can compromise the values obtained from the above problem. Keywords: rotating element, reducing material, mass moment of inertia.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2093 ◽  
Author(s):  
Yu Dai ◽  
Feiyue Ma ◽  
Xiang Zhu ◽  
Jifu Jia

Reducing the energy consumption and improving the efficiency of high-speed transmission systems are increasingly common goals; the windage power loss is not negligible in these methods. In this work, the multi-reference frame (MRF) and periodic boundary conditions (PBC) based on the computational fluid dynamics (CFD) method were adopted to investigate the windage phenomena of a single face gear with and without a shroud, and the impact of the gear speed on the windage power loss was analyzed. Furthermore, the effects on the distribution of static pressure due to the distances between the shroud and the gear body in different directions, including the outer radius direction, the inner radius direction, and the addendum direction were investigated. The results indicate that the gear speed significantly affected the windage loss, as the higher the gear speed was, the greater the windage power loss. Additionally, the shroud could effectively reduce the windage power loss, where the optimal distance from the addendum to the shroud was not the minimum distance; however, for the distances from the shroud to the inner radius and the outer radius, the smaller the distance was, the smaller the windage loss. The results can provide a theoretical basis and technical reference for reducing the windage power loss of various face gear drives.


2019 ◽  
Vol 37 (2) ◽  
pp. 201-214
Author(s):  
John D. de Boer ◽  
Jean-Marc A. Noël ◽  
Jean-Pierre St.-Maurice

Abstract. We investigate whether the boundaries of an ionospheric region of different density than its surroundings will drift relative to the background E×B drift and, if so, how the drift depends on the degree of density enhancement and the altitude. We find analytic solutions for discrete circular features in a 2-D magnetised plasma. The relative drift is proportional to the density difference, which suggests that where density gradients occur they should tend to steepen on one side of a patch while they are weakened on the other. This may have relevance to the morphology of polar ionospheric patches and auroral arcs, since the result is scale-invariant. There is also an altitude dependence which enters through the ion-neutral collision frequency. We discuss how the 2-D analytic result can be applied to the real ionosphere.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4621
Author(s):  
Thanh-Tung Nguyen ◽  
Yu-Jin Yeom ◽  
Taehong Kim ◽  
Dae-Heon Park ◽  
Sehan Kim

Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scaling up and down the number of resource units, called pods, without having to restart the whole system. Kubernetes monitors default Resource Metrics including CPU and memory usage of host machines and their pods. On the other hand, Custom Metrics, provided by external software such as Prometheus, are customizable to monitor a wide collection of metrics. In this paper, we investigate HPA through diverse experiments to provide critical knowledge on its operational behaviors. We also discuss the essential difference between Kubernetes Resource Metrics (KRM) and Prometheus Custom Metrics (PCM) and how they affect HPA’s performance. Lastly, we provide deeper insights and lessons on how to optimize the performance of HPA for researchers, developers, and system administrators working with Kubernetes in the future.


Sign in / Sign up

Export Citation Format

Share Document