scholarly journals New Techniques for Seed Shape Description in Silene Species

Taxonomy ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-19
Author(s):  
Ana Juan ◽  
José Javier Martín-Gómez ◽  
José Luis Rodríguez-Lorenzo ◽  
Bohuslav Janoušek ◽  
Emilio Cervantes

Seed shape in Silene species is often described by means of adjectives such as reniform, globose, and orbicular, but the application of seed shape for species classification requires quantification. A method for the description and quantification of seed shape consists in the comparison with geometric models. Geometric models based on mathematical equations were applied to characterize the general morphology of the seeds in 21 species of Silene. In addition to the previously described four models (M1 is the cardioid, and M2 to M4 are figures derived from it), we present four new geometric models (model 5–8). Models 5 and 6 are open cardioids that resemble M3, quite different from the flat models, M2 and M4. Models 7 and 8 were applied to those species not covered by models 2 to 6. Morphological measures were obtained to describe and characterize the dorsal view of the seeds. The analyses done on dorsal views revealed a notable morphological diversity and four groups were identified. A correlation was found between roundness of dorsal view and the geometric models based on lateral views, such that some of the groups defined by seed roundness are also characterized by the similarity to particular models. The usefulness of new morphological tools of seed morphology to taxonomy is discussed.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2546
Author(s):  
José Javier Martín-Gómez ◽  
Diego Gutiérrez del Pozo ◽  
Ángel Tocino ◽  
Emilio Cervantes

Seed shape in species of the Cactaceae is described by comparison with geometric models. Three new groups of models are presented, two for symmetric seeds, and a third group for asymmetric seeds. The first two groups correspond, respectively, to superellipses and the combined equations of two semi-ellipses. The third group contains models derived from the representation of polar equations of Archimedean spirals that define the shape of asymmetric seeds in genera of different subfamilies. Some of the new models are geometric curves, while others are composed with a part resulting from the average silhouettes of seeds. The application of models to seed shape quantification permits the analysis of variation in seed populations, as well as the comparison of shape between species. The embryos of the Cactaceae are of the peripheral type, strongly curved and in contact with the inner surface of the seed coat. A relationship is found between seed elongation and the models, in which the genera with elongated seeds are represented by models with longer trajectories of the spiral. The analysis of seed shape opens new opportunities for taxonomy and allows quantification of seed shape in species of the Cactaceae.


Horticulturae ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 60 ◽  
Author(s):  
Cervantes ◽  
Gómez

Modern methods of image analysis are based on the coordinates of the points making the silhouette of an image and allow the comparison between seed shape in different species and varieties. Nevertheless, these methods miss an important reference point because they do not take into consideration the similarity of seeds with geometrical figures. We propose a method based on the comparison of the bi-dimensional images of seeds with geometric figures. First, we describe six geometric figures that may be used as models for shape description and quantification and later on, we give an overview with examples of some of the types of seed morphology in angiosperms including families of horticultural plants and addressing the question of how is the distribution of seed shape in these families. The relationship between seed shape and other characteristics of plant species is discussed.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1787
Author(s):  
José Javier Martín-Gómez ◽  
Agnieszka Rewicz ◽  
José Luis Rodríguez-Lorenzo ◽  
Bohuslav Janoušek ◽  
Emilio Cervantes

Seed description in morphology is often based on adjectives such as “spherical”, “globular”, or “reniform”, but this does not provide a quantitative method. A new morphological approach based on the comparison of seed images with geometric models provides a seed description in Silene species on a quantitative basis. The novelty of the proposed method is based in the comparison of the seed images with geometric models according to a cardioid shape. The J index is a measurement that indicates the seed percentage of similarity with a cardioid or cardioid-derived figures used as models. The seeds of Silene species have high values of similarity with the cardioid and cardioid-derived models (J index superior to 90). The comparison with different figures allows species description and differentiation. The method is applied here to seeds of 21 species and models are proposed for some of them including S. diclinis, an endangered species. The method is discussed in the context of previous comparison with the measures used in traditional morphometric analysis. The similarity of seed images with geometric figures opens a new perspective for the automatized taxonomical evaluation of samples linking seed morphology to functional traits in endangered Silene species.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 739 ◽  
Author(s):  
José Javier Martín-Gómez ◽  
Diego Gutiérrez del Pozo ◽  
Mariano Ucchesu ◽  
Gianluigi Bacchetta ◽  
Félix Cabello Sáenz de Santamaría ◽  
...  

Morphometric methods based on artificial vision algorithms provide measurements for magnitudes descriptive of seed images (i.e., the length, width, area, and surface circularity index). Nevertheless, their results frequently omit the resemblance of the images to geometric figures that may be used as models. A complementary method based on the comparison of seed images with geometric models is applied to seeds of Vitis spp. The J index gives the percentage of similarity between a seed image and the model. Seven new geometric models are described based on the heart-shaped and piriform curves. Seeds of different species, subspecies and cultivars of Vitis adjust to different models. Models 1 and 3, the heart curve and the water drop, adjust better to seeds of V. amurensis, V. labrusca and V. rupestris than to V. vinifera. Model 6, the Fibonacci’s pear, adjusts well to seeds of V. vinifera, in general, and better to V. vinifera ssp. vinifera than to V. vinifera ssp. sylvestris. Seed morphology in species of Cissus and Parthenocissus, two relatives of Vitis in the Vitaceae, is also analysed. Geometric models are a tool for the description and identification of species and lower taxonomic levels complementing the results of morphometric analysis.


2019 ◽  
Vol 26 (2) ◽  
pp. 315-324
Author(s):  
Soghra Ramzi ◽  
Shahryar Saedi-Mehrvarz

Seed morphology of 12 Iranian endemic and subendemic species of Veronica was studied using scanning electron microscope (SEM). Seven qualitative and quantitative characters were measured using SEM micrographs and stereomicroscopy. The seed shape of most species is ovate and plano-convex. The size of seeds ranges from 1.25 x 0.75 mm in V. khorassanica to 2.5 x 1.75 mm in V. viscosa Boiss. The ornamentation of seed coat is reticulate-verrucate in V. khorassanica, V. czerniakowskiana, V. mazanderanae and V. rubrifolia, reticulate-rugate in V. acrotheca, V. aucheri, V. viscosa and V. intercedens, rugose in V. microcarpa, V. chionantha and V. rechingeri, and reticulate-porate in V. gaubae. The testa cells are polygonal in ten species and irregular in two species. Micromorphological characters of seeds are useful in specific and subspecific delimitations of Iranian Veronica.


Phytotaxa ◽  
2019 ◽  
Vol 425 (4) ◽  
pp. 193-207 ◽  
Author(s):  
JOSÈ JAVIER MARTÍN-GÓMEZ ◽  
AGNIESZKA REWICZ ◽  
EMILIO CERVANTES

Seed shape in the order Ranunculales is described with the objective of characterizing the morphological seed types in the families of this order and to establish a correlation between seed shape, plant structure and life style.         Based on previous work in model plants (Arabidopsis thaliana, Lotus japonicus, Medicago truncatula), we have used the J index to estimate the percentage of similarity of the image of a seed with a geometric shape. The images of seeds of model plants resemble cardioid or cardioid-derived models, while seeds from other species with rapid life cycles resemble other, also simple geometrical figures. In general, seed shape may help establishing the relationships between taxonomic groups.         Three types of seed morphology are distinguished in the Ranunculales based on values of J index. In the first type, seeds in the Berberidaceae, Euptelaceae and Lardizabalaceae, adjust well to an oval. The second type, seeds in the Papaveraceae, adjust well to the cardioid model, and the third type, seeds in the Ranunculaceae, adjust well to diverse geometric shapes, including the oval, truncated cardioid, Fibonacci spiral and ellipse. In the Ranunculales, seed shape is varied and often related to geometrical figures.                The presence of cardioid derived models in the Papaveraceae supports our hypothesis that seeds resembling the cardioid are frequent in plants with rapid life cycles.Ranunculales


Phytotaxa ◽  
2018 ◽  
Vol 336 (3) ◽  
pp. 263
Author(s):  
İLKER GENÇ ◽  
ŞÜKRAN KÜLTÜR

A comprehensive study based on seed morphology of perennial Euphorbia (Euphorbiaceae) sect. Pithyusa species occurring in Turkey is presented. A total of 14 species were studied. Seed characteristics were examined using scanning electron microscopy (SEM) as well as dissecting light microscopy. Significant features are: seed size, seed shape, shape of caruncle and seed surface ornamentation. Three different seed surface types (smooth, pitted, and wrinkled) were observed. Four main seed shapes (ovoid, oblong, quadrangular, and globose), as well as seven types of seed coat ornamentation (reticulate-areolate, areolate, alveolate, falsifoveate, pusticulate, colliculate and smooth) were found. The number of testa cells per 100 µm2 and also its range, from 8–12 to 57–63, are given.


Phytotaxa ◽  
2017 ◽  
Vol 331 (2) ◽  
pp. 169 ◽  
Author(s):  
KAMİL COŞKUNÇELEBİ ◽  
SERDAR MAKBUL ◽  
SEDA OKUR

Macro- and micro-morphological features of seeds belonging to 26 taxa from Turkey were observed under the light and scanning electron microscopy. Present findings partly agree with segregation of Epilobium and Chamerion at generic level. The members of the genus Epilobium were distinguished by seeds with conical, semispherical, cylindrical or crest-like papillae or without papillae, granulate periclinal surfaces, papillae with parallel, radial, irregular or spirally furrow and the members of Chamerion were distinguished by seeds crest-like papillae or without papillae and without granulate periclinal surfaces and without furrow. The results also showed that seed shape, presence/absence of papillae and beak, papillae shape and ornamentation, and periclinal wall features are valuable for delimiting the examined taxa specific level within both genera. A key to Turkish Epilobium and Chamerion taxa based on seed morphology is presented for the first time


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1695
Author(s):  
Emilio Cervantes ◽  
José Javier Martín-Gómez ◽  
Diego Gutiérrez del Pozo ◽  
Ángel Tocino

The Vitaceae Juss., in the basal lineages of Rosids, contains sixteen genera and 950 species, mainly of tropical lianas. The family has been divided in five tribes: Ampelopsideae, Cisseae, Cayratieae, Parthenocisseae and Viteae. Seed shape is variable in this family. Based on new models derived from equations representing heart and water drop curves, we describe seed shape in species of the Vitaceae. According to their similarity to geometric models, the seeds of the Vitaceae have been classified in ten groups. Three of them correspond to models before described and shared with the Arecaceae (lenses, superellipses and elongated water drops), while in the seven groups remaining, four correspond to general models (waterdrops, heart curves, elongated heart curves and other elongated models) and three adjust to the silhouettes of seeds in particular genera (heart curves of Cayratia and Pseudocayratia, heart curves of the Squared Heart Curve (SqHC) type of Ampelocissus and Ampelopsis and Elongated Superellipse-Heart Curves (ESHCs), frequent in Tetrastigma species and observed also in Cissus species and Rhoicissus rhomboidea). The utilities of the application of geometric models for seed description and shape quantification in this family are discussed.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 161 ◽  
Author(s):  
Surya Diantina ◽  
Craig McGill ◽  
James Millner ◽  
Jayanthi Nadarajan ◽  
Hugh W. Pritchard ◽  
...  

Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D. lineale), and four temperate species from New Zealand, terrestrial Gastrodia cunnninghamii, Pterostylis banksii and Thelymitra nervosa, and epiphytic D. cunninghamii. Our results show some similarities among related species in their pod shape and colour, and seed colouration. All the species studied have scobiform or fusiform seeds and prolate-spheroid embryos. Specifically, D. strebloceras, G. cunninghamii, and P. banksii have an elongated seed shape, while T. nervosa has truncated seeds. Interestingly, we observed high variability in the micro-morphological seed characteristics of these orchid species, unrelated to their taxonomy, biogeographical origin, or growth habit, suggesting different ecological adaptations possibly reflecting their modes of dispersal.


Sign in / Sign up

Export Citation Format

Share Document