scholarly journals Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 427 ◽  
Author(s):  
Lianhui Zhao ◽  
Yunfei Huang ◽  
Yiyang Dong ◽  
Xutiange Han ◽  
Sai Wang ◽  
...  

Marine biotoxins distribute widely, have high toxicity, and can be easily accumulated in water or seafood, exposing a serious threat to consumer health. Achieving specific and sensitive detection is the most effective way to prevent emergent issues caused by marine biotoxins; however, the previous detection methods cannot meet the requirements because of ethical or technical drawbacks. Aptamers, a kind of novel recognition element with high affinity and specificity, can be used to fabricate various aptasensors (aptamer-based biosensors) for sensitive and rapid detection. In recent years, an increasing number of aptamers and aptasensors have greatly promoted the development of marine biotoxins detection. In this review, we summarized the recent aptamer-related advances for marine biotoxins detection and discussed their perspectives. Firstly, we summarized the sequences, selection methods, affinity, secondary structures, and the ion conditions of all aptamers to provide a database-like information; secondly, we summarized the reported aptasensors for marine biotoxins, including principles, detection sensitivity, linear detection range, etc.; thirdly, on the basis of the existing reports and our own research experience, we forecast the development prospects of aptamers and aptasensors for marine biotoxins detection. We hope this review not only provides a comprehensive summary of aptamer selection and aptasensor development for marine biotoxins, but also arouses a broad readership amongst academic researchers and industrial chemists.

2021 ◽  
Author(s):  
Matthew Wheatley ◽  
Yong-Ping Duan ◽  
Yinong Yang

Citrus Huanglongbing (HLB) or greening is one of the most devastating diseases of citrus worldwide. Sensitive detection of its causal agent, Candidatus Liberibacter asiaticus (CLas), is critical for early diagnosis and successful management of HLB. However, current nucleic acid-based detection methods are often insufficient for the early detection of CLas from asymptomatic tissue, and unsuitable for high-throughput and field-deployable diagnosis of HLB. Here we report the development of the Cas12a-based DETECTR (DNA endonuclease-targeted CRISPR trans reporter) assay for highly specific and sensitive detection of CLas nucleic acids from infected samples. The DETECTR assay, which targets the five-copy nrdB gene specific to CLas, couples isothermal amplification with Cas12a trans-cleavage of fluorescent reporter oligos and enables detection of CLas nucleic acids at the attomolar level. The DETECTR assay was capable of specifically detecting the presence of CLas across different infected citrus, periwinkle and psyllid samples, and shown to be compatible with lateral flow assay technology for potential field-deployable diagnosis. The improvements in detection sensitivity and flexibility of the DETECTR technology position the assay as a potentially suitable tool for early detection of CLas in infected regions.


2021 ◽  
Author(s):  
Kanyapat Teekayupak ◽  
Nipapan Ruecha ◽  
Orawon Chailapakul ◽  
Nadnudda Rodthongkum

Abstract We report on the development of an electrochemical sensor platform based on modified cotton fibers for the non-enzymatic detection of uric acid (UA), an important biomarker for gout disease. To create the flexible electrode, a cotton thread was coated with carbon ink followed by the electrodeposition of AuNPs. Then, differential pulse voltammetry (DPV) was used to evaluate the sensor performances, and a linear detection range between 10 µM and 5.0 mM of uric acid was obtained. The sensor has a low detection limit of 0.12 µM, which is optimal for use in the patients suffering from gout disease which commonly experience concentrations of uric acid in urine higher than 4.46 mM. Furthermore, we found that the detection sensitivity of the platform was not affected by the presence of other physiological compounds present in human urine. The described platform has the potential for integration in a diaper hence enabling rapid detection and screening for gout disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Avinash Upadhya ◽  
Yujie Zheng ◽  
Li Li ◽  
Woei Ming Lee

AbstractBack focal plane interferometry (BFPI) is one of the most straightforward and powerful methods for achieving sub-nanometer particle tracking precision at high speed (MHz). BFPI faces technical challenges that prohibit tunable expansion of linear detection range with minimal loss to sensitivity, while maintaining robustness against optical aberrations. In this paper, we devise a tunable BFPI combining a structured beam (conical wavefront) and structured detection (annular quadrant photodiode). This technique, which we termed Structured Back Focal Plane Interferometry (SBFPI), possesses three key novelties namely: extended tracking range, low loss in sensitivity, and resilience to spatial aberrations. Most importantly, the conical wavefront beam preserves the axial Gouy phase shift and lateral beam waist that can then be harnessed in a conventional BFPI system. Through a series of experimental results, we were able to tune detection sensitivity and detection range over the SBFPI parameter space. We also identified a figure of merit based on the experimental optimum that allows us to identify optimal SBPFI configurations that balance both range and sensitivity. In addition, we also studied the resilience of SBFPI against asymmetric spatial aberrations (astigmatism of up to 0.8 λ) along the lateral directions. The simplicity and elegance of SBFPI will accelerate its dissemination to many associated fields in optical detection, interferometry and force spectroscopy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chaohui Zhou ◽  
Zhongyun Chu ◽  
Wenyue Hou ◽  
Xiuying Wang

Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable attention in detection of biological analytes and bioimaging owing to their superior optical properties, including high photochemical stability, sharp emission bandwidth, large anti-Stokes shifts, and low toxicity. In this work, we fabricated UCNP-linked immunosorbent assay (ULISA) for the sensitive detection of carbohydrate antigen 19-9 (CA19-9). The design is based on amino-functionalized SiO2-coated Gd-doped NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs@SiO2-NH2) as a direct background-free luminescent reporter; a secondary anti-IgG antibody (Ab2) was conjugated to the surface of UCNPs@SiO2-NH2 (UCNP-Ab2), and UCNP-Ab2 was used for specific targeting of CA19-9. The UCNPs were well characterized by TEM, SEM, XRD, FT-IR, and UV-vis. The detection process was similar to enzyme-linked immunosorbent assay (ELISA). UCNPs were used as signal transducer to replace the color compounds for an enzyme-mediated signal amplification step. An anti-CA19-9 primary antibody (Ab1) was fixed for capturing the CA19-9, and the fluorescence signal was obtained from the specific immunoreaction between UCNP-Ab2 and CA19-9. Under optimum conditions, this ULISA shows sensitive detection of CA19-9 with a dynamic range of 5–2,000 U/ml. The ULISA system shows higher detection sensitivity and wider detection range compared with the traditional ELISA for CA19-9 detection. This strategy using UCNPs as signal transducer may pave a new avenue for the exploration of rare doped UCNPs in ELISA assay for clinical applications in the future.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Pushap Raj ◽  
Man Hwan Oh ◽  
Kyudong Han ◽  
Tae Yoon Lee

Bacterial infections have become a significant challenge in terms of public health, the food industry, and the environment. Therefore, it is necessary to address these challenges by developing a rapid, cost-effective, and easy-to-use biosensor for early diagnosis of bacterial pathogens. Herein, we developed a simple, label-free, and highly sensitive immunosensor based on electrochemical detection using the Au@MoS₂–PANI nanocomposite. The conductivity of the glassy carbon electrode is greatly enhanced using the Au@MoS₂–PANI nanocomposite and a self-assembled monolayer of mercaptopropionic acid on the gold nanoparticle surface was employed for the covalent immobilization of antibodies to minimize the nonspecific adsorption of bacterial pathogens on the electrode surface. The biosensor established a high selectivity and sensitivity with a low limit of detection of 10 CFU/mL, and detected Escherichia coli within 30 min. Moreover, the developed biosensor demonstrated a good linear detection range, practical utility in urine samples, and electrode regenerative studies.


Author(s):  
Hassan M.E. Azzazy ◽  
Mai M.H. Mansour ◽  
Tamer M. Samir ◽  
Ricardo Franco

AbstractIn order to meet the challenges of effective healthcare, the clinical laboratory is constantly striving to improve testing sensitivity while reducing the required time and cost. Gold nanoparticles (AuNPs) are proposed as one of the most promising tools to meet such goals. They have unique optophysical properties which enable sensitive detection of biomarkers, and are easily amenable to modification for use in different assay formats including immunoassays and molecular assays. Additionally, their preparation is relatively simple and their detection methods are quite versatile. AuNPs are showing substantial promise for effective practical applications and commercial utilization is already underway. This article covers the principles of preparation of AuNPs and their use for development of different diagnostic platforms.


2021 ◽  
Vol 368 (6) ◽  
Author(s):  
Liwen Zhang ◽  
Qingyu Lv ◽  
Yuling Zheng ◽  
Xuan Chen ◽  
Decong Kong ◽  
...  

ABSTRACT T-2 is a common mycotoxin contaminating cereal crops. Chronic consumption of food contaminated with T-2 toxin can lead to death, so simple and accurate detection methods in food and feed are necessary. In this paper, we establish a highly sensitive and accurate method for detecting T-2 toxin using AlphaLISA. The system consists of acceptor beads labeled with T-2-bovine serum albumin (BSA), streptavidin-labeled donor beads and biotinylated T-2 antibodies. T-2 in the sample matrix competes with T-2-BSA for antibodies. Adding biotinylated antibodies to the test well followed by T-2 and T-2-BSA acceptor beads yielded a detection range of 0.03–500 ng/mL. The half-maximal inhibitory concentration was 2.28 ng/mL and the coefficient of variation was <10%. In addition, this method had no cross-reaction with other related mycotoxins. This optimized method for extracting T-2 from food and feed samples achieved a recovery rate of approximately 90% in T-2 concentrations as low as 1 ng/mL, better than the performance of a commercial ELISA kit. This competitive AlphaLISA method offers high sensitivity, good specificity, good repeatability and simple operation for detecting T-2 toxin in food and feed.


2019 ◽  
Vol 12 (2) ◽  
pp. 891-902 ◽  
Author(s):  
Sascha R. Albrecht ◽  
Anna Novelli ◽  
Andreas Hofzumahaus ◽  
Sungah Kang ◽  
Yare Baker ◽  
...  

Abstract. Hydroxyl and hydroperoxy radicals are key species for the understanding of atmospheric oxidation processes. Their measurement is challenging due to their high reactivity; therefore, very sensitive detection methods are needed. Within this study, the measurement of hydroperoxy radicals (HO2) using chemical ionisation combined with a high-resolution time-of-flight mass spectrometer (Aerodyne Research Inc.) employing bromide as the primary ion is presented. The sensitivity reached is equal to 0.005×108 HO2 cm−3 for 106 cps of bromide and 60 s of integration time, which is below typical HO2 concentrations found in the atmosphere. The detection sensitivity of the instrument is affected by the presence of water vapour. Therefore, a water-vapour-dependent calibration factor that decreases approximately by a factor of 2 if the water vapour mixing ratio increases from 0.1 % to 1.0 % needs to be applied. An instrumental background, most likely generated by the ion source that is equivalent to a HO2 concentration of (1.5±0.2)×108 molecules cm−3, is subtracted to derive atmospheric HO2 concentrations. This background can be determined by overflowing the inlet with zero air. Several experiments were performed in the atmospheric simulation chamber SAPHIR at the Forschungszentrum Jülich to test the instrument performance in comparison to the well-established laser-induced fluorescence (LIF) technique for measurements of HO2. A highly linear correlation coefficient of R2=0.87 is achieved. The slope of the linear regression of 1.07 demonstrates the good absolute agreement of both measurements. Chemical conditions during experiments allowed for testing the instrument's behaviour in the presence of atmospheric concentrations of H2O, NOx, and O3. No significant interferences from these species were observed. All of these facts demonstrate a reliable measurement of HO2 by the chemical ionisation mass spectrometer presented.


2015 ◽  
Vol 17 (6) ◽  
pp. 065606 ◽  
Author(s):  
S Masoumeh Mousavi ◽  
Akbar Samadi ◽  
Faegheh Hajizadeh ◽  
S Nader S Reihani

2021 ◽  
Author(s):  
shenwei he ◽  
Jianming Zhu ◽  
peiyao xie ◽  
Jianfei Liu ◽  
Di Zhang ◽  
...  

Nitroxyl (HNO) as an important reactive nitrogen species (RNS), which plays an important role in multiple physiological process. Therefore, it is urgent to exploit reliable and efficient detection methods for...


Sign in / Sign up

Export Citation Format

Share Document