scholarly journals Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 464 ◽  
Author(s):  
Constanze Nossol ◽  
Peter Landgraf ◽  
Stefan Kahlert ◽  
Michael Oster ◽  
Berend Isermann ◽  
...  

Deoxynivalenol (DON) is a toxin found in cereals as well as in processed products such as pasta, and causes substantial economic losses for stock breeding as it induces vomiting, reduced feeding, and reduced growth rates in piglets. Oxidative phosphorylation, TCA-cycle, transcription, and translation have been hypothesized to be leading pathways that are affected by DON. We used an application of high and low glucose to examine oxidative phosphorylation and anaerobic glycolysis. A change in the metabolic status of IPEC-J2 was observed and confirmed by microarray data. Measurements of oxygen consumption resulted in a significant reduction, if DON attacks from the basolateral. Furthermore, we found a dose-dependent effect with a significant reduction at 2000 ng/mL. In addition, SLC7A11 and PHB, the genes with the highest regulation in our microarray analyses under low glucose supply, were investigated and showed a variable regulation on protein level. Lactate production and glucose consumption was investigated to examine the impact of DON on anaerobic glycolysis and we observed a significant increase in 2000 blhigh and a decrease in 2000 aphigh. Interestingly, both groups as well as 200 blhigh showed a significant higher de novo protein synthesis when compared to the control. These results indicate the direct or indirect impact of DON on metabolic pathways in IPEC-J2.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1518
Author(s):  
Keun-Yeong Jeong ◽  
Jae-Jun Sim ◽  
Min Hee Park ◽  
Hwan Mook Kim

Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.


1975 ◽  
Vol 49 (5) ◽  
pp. 375-384
Author(s):  
N. Worathumrong ◽  
A. J. Grimes

1. Some effects of sodium salicylate upon anaerobic glycolysis have been studied in normal human erythrocytes incubated for up to 6 h at 37°C in autologous sera. 2. Both glucose consumption and lactate production were stimulated by concentrations of salicylate up to 60 mmol/l but at the highest concentration used (90 mmol/l) an initial stimulus was followed by inhibition of glycolysis. 3. Losses occurred of adenosine 5′-triphosphate (ATP), adenosine 5′-diphosphate (ADP) and adenosine 5′-phosphate (AMP) at higher concentrations of salicylate and there was a concomitant increase of inorganic phosphate. 4. Other phosphate esters underwent concentration changes at higher concentrations of salicylate that reflected inadequate concentrations of ATP for glycolysis. 5. The rates of sodium efflux from, and potassium influx into, erythrocytes were unaffected by the presence of salicylate at concentrations sufficient to stimulate glycolysis.


2019 ◽  
Vol 41 (5) ◽  
pp. 656-665
Author(s):  
Anastasia Kariagina ◽  
Sophia Y Lunt ◽  
J Justin McCormick

Abstract Metabolic changes accompanying a step-wise malignant transformation was investigated using a syngeneic lineage of human fibroblasts. Cell immortalization was associated with minor alterations in metabolism. Consecutive loss of cell cycle inhibition in immortalized cells resulted in increased levels of oxidative phosphorylation (OXPHOS). Overexpression of the H-Ras oncoprotein produced cells forming sarcomas in athymic mice. These transformed cells exhibited increased glucose consumption, glycolysis and a further increase in OXPHOS. Because of the markedly increased OXPHOS in transformed cells, the impact of a transaminase inhibitor, aminooxyacetic acid (AOA), which decreases glutamine influx to the tricarboxylic acid (TCA) cycle, was tested. Indeed, AOA significantly decreased proliferation of malignantly transformed fibroblasts and fibrosarcoma-derived cells in vitro and in vivo. AOA also decreased proliferation of cells susceptible to malignant transformation. Metabolomic studies in normal and transformed cells indicated that, in addition to the anticipated effect on the TCA cycle, AOA decreased production of nucleotides adenosine triphosphate (ATP) and uridine monophosphate. Exogenous nucleotides partially rescued decreased proliferation of the malignant cells treated with AOA. Our data indicate that AOA blocks several metabolic pathways essential for growth of malignant cells. Therefore, OXPHOS may provide important therapeutic targets for treatment of sarcoma.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mario Barilani ◽  
Roberta Palorini ◽  
Giuseppina Votta ◽  
Roberta Piras ◽  
Giuseppe Buono ◽  
...  

Abstract Metabolism and mitochondrial biology have gained a prominent role as determinants of stem cell fate and function. In the context of regenerative medicine, innovative parameters predictive of therapeutic efficacy could be drawn from the association of metabolic or mitochondrial parameters to different degrees of stemness and differentiation potentials. Herein, this possibility was addressed in human mesenchymal stromal/stem cells (hMSC) previously shown to differ in lifespan and telomere length. First, these hMSC were shown to possess significantly distinct proliferation rate, senescence status and differentiation capacity. More potential hMSC were associated to higher mitochondrial (mt) DNA copy number and lower mtDNA methylation. In addition, they showed higher expression levels of oxidative phosphorylation subunits. Consistently, they exhibited higher coupled oxygen consumption rate and lower transcription of glycolysis-related genes, glucose consumption and lactate production. All these data pointed at oxidative phosphorylation-based central metabolism as a feature of higher stemness-associated hMSC phenotypes. Consistently, reduction of mitochondrial activity by complex I and III inhibitors in higher stemness-associated hMSC triggered senescence. Finally, functionally higher stemness-associated hMSC showed metabolic plasticity when challenged by glucose or glutamine shortage, which mimic bioenergetics switches that hMSC must undergo after transplantation or during self-renewal and differentiation. Altogether, these results hint at metabolic and mitochondrial parameters that could be implemented to identify stem cells endowed with superior growth and differentiation potential.


1992 ◽  
Vol 262 (3) ◽  
pp. C682-C690 ◽  
Author(s):  
N. Bashan ◽  
E. Burdett ◽  
H. S. Hundal ◽  
A. Klip

The effect of varying cellular oxygenation on L6 muscle cell 2-deoxy-D-glucose transport, glucose utilization, lactate production, and expression of GLUT1 and GLUT4 transport proteins was investigated. Incubation of L6 myotubes in 3% O2 (mimicking a state of hypoxia) elevated glucose uptake by 6.5-fold over 48 h relative to cells incubated in 21% O2 (normoxia). Incubation of L6 cells in hyperoxic conditions (50% O2) significantly depressed glucose uptake by 0.4-fold. These effects were fully reversible. Incubation in 3% O2 also caused lactate accumulation and enhanced glucose consumption from the medium. Hypoxia elevated 2-deoxy-D-glucose transport even when the concentration of glucose in the medium was kept constant, suggesting that glucose deprivation alone was not responsible for increased cellular glucose uptake. Incubation in 3% O2 also elevated 3-O-methylglucose uptake but not amino acid uptake. Cycloheximide prevented the hypoxia-induced increase in glucose uptake, indicating that de novo synthesis of glucose transport-related proteins was the major means by which cells increased glucose uptake. The content of GLUT1 glucose transporter was significantly elevated in total membranes of cells incubated in 3% O2 and depressed in membranes from cells incubated in hyperoxic conditions, whereas GLUT4 expression was not affected. These results indicate that hypoxia induces an adaptive response of increasing cellular glucose uptake through elevated expression of GLUT1 in an attempt to maintain supply of glucose for utilization by nonoxidative pathways.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hong-tao Song ◽  
Yu Qin ◽  
Guo-dong Yao ◽  
Zhen-nan Tian ◽  
Song-bin Fu ◽  
...  

To investigate the role of AEG-1 in glycolysis and tumorigenesis, we construct myc-AEG-1 expression vector and demonstrate a novel mechanism that AEG-1 may increase the activity of AMPK by Thr172 phosphorylation. The higher expression levels of AEG-1 in colorectal carcinoma cells were found but showed significant difference in different cell lines. To study the role of AEG-1 in colorectal cells, myc-AEG-1 vector was constructed and transfected into NCM460 colonic epithelial cells. We observed consistent increasing of glucose consumption and lactate production, typical features of anaerobic glycolysis, suggesting that AEG-1 may promote anaerobic glycolysis. Moreover, we noted that AMPK phosphorylation at Thr172 as well as pPFK2 (Ser466) was increased in NCM460 cells overexpressing AEG-1. Compound C may block AMPK and PFK2 phosphorylation in both control and AEG-1-overexpressed cells and decrease the glucose consumption and lactate production. The present findings indicated that reduced AEG-1 protein levels by RNAi may decrease the glucose consumption and lactate production in HCT116 colorectal carcinoma cells. The present identified AEG-1/AMPK/PFK2 glycolysis cascade may be essential to cell proliferation and tumor growth. The present results may provide us with a mechanistic insight into novel targets controlled by AEG-1, and the components in the AEG-1/AMPK/PFK2 glycolysis process may be targeted for the clinical treatment of cancer.


2020 ◽  
Vol 8 (5) ◽  
pp. 698
Author(s):  
Rajoana Rojony ◽  
Lia Danelishvili ◽  
Anaamika Campeau ◽  
Jacob M. Wozniak ◽  
David J. Gonzalez ◽  
...  

Mycobacterium abscessus subsp. abscessus (MAB) is a clinically important nontuberculous mycobacterium (NTM) causing pulmonary infection in patients such as cystic fibrosis and bronchiectasis. MAB is naturally resistant to the majority of available antibiotics. In attempts to identify the fundamental response of MAB to aerobic, anaerobic, and biofilm conditions (as it is encountered in patients) and during exposure to antibiotics, we studied bacterial proteome using tandem mass tag mass spectrometry sequencing. Numerous de novo synthesized proteins belonging to diverse metabolic pathways were found in anaerobic and biofilm conditions, including glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism. Upon exposure to amikacin and linezolid under stress environments, MAB displayed metabolic enrichment for glycerophospholipid metabolism and oxidative phosphorylation. By comparing proteomes of two significant NTMs, MAB and M. avium subsp. hominissuis, we found highly synthesized shared enzymes of oxidative phosphorylation, TCA cycle, glycolysis/gluconeogenesis, glyoxylate/dicarboxylate, nitrogen metabolism, peptidoglycan biosynthesis, and glycerophospholipid/glycerolipid metabolism. The activation of peptidoglycan and fatty acid biosynthesis pathways indicates the attempt of bacteria to modify the cell wall, influencing the susceptibility to antibiotics. This study establishes global changes in the synthesis of enzymes promoting the metabolic shift and enhancing the pathogen resistance to antibiotics within different environments.


2010 ◽  
Vol 30 (6) ◽  
pp. 1303-1318 ◽  
Author(s):  
Valentina Fogal ◽  
Adam D. Richardson ◽  
Priya P. Karmali ◽  
Immo E. Scheffler ◽  
Jeffrey W. Smith ◽  
...  

ABSTRACT p32/gC1qR/C1QBP/HABP1 is a mitochondrial/cell surface protein overexpressed in certain cancer cells. Here we show that knocking down p32 expression in human cancer cells strongly shifts their metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. The p32 knockdown cells exhibited reduced synthesis of the mitochondrial-DNA-encoded OXPHOS polypeptides and were less tumorigenic in vivo. Expression of exogenous p32 in the knockdown cells restored the wild-type cellular phenotype and tumorigenicity. Increased glucose consumption and lactate production, known as the Warburg effect, are almost universal hallmarks of solid tumors and are thought to favor tumor growth. However, here we show that a protein regularly overexpressed in some cancers is capable of promoting OXPHOS. Our results indicate that high levels of glycolysis, in the absence of adequate OXPHOS, may not be as beneficial for tumor growth as generally thought and suggest that tumor cells use p32 to regulate the balance between OXPHOS and glycolysis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christos Chinopoulos

A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.


1999 ◽  
Vol 19 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Peter Lund Madsen ◽  
Nancy F. Cruz ◽  
Louis Sokoloff ◽  
Gerald A. Dienel

Functional activation stimulates CMRglc more than CMRO2 and raises lactate levels in brain. This has been interpreted as evidence that brain work is supported mainly by energy derived from anaerobic glycolysis. To determine if lactate production accounts for the “excess” glucose consumption, cerebral arteriovenous differences were measured in conscious rats before, during, and 15 minutes after sensory stimulation; the brains were rapidly frozen in situ immediately after completion of blood sampling and assayed for metabolite levels. The molar O2/glucose uptake ratio fell from 6.1 ± 1.1 (mean ± SD) before stimulation to 5.0 ± 1.1 during activation ( P < 0.01); lactate efflux from brain to blood was detectable at rest but not during stimulation. By 15 minutes after activation, O2 and lactate arteriovenous differences normalized, whereas that for glucose fell, causing the O2/glucose ratio to rise above preactivation levels to 7.7 ± 2.6 ( P < 0.01). Brain glucose levels remained stable through all stages of activity. Brain lactate levels nearly doubled during stimulation but normalized within 15 minutes of recovery. Brain glycogen content fell during activation and declined further during recovery. These results indicate that brain glucose metabolism is not in a steady state during and shortly after activation. Furthermore, efflux from and increased content of lactate in the brain tissue accounted for less than 54% of the “excess” glucose used during stimulation, indicating that a shift to anaerobic glycolysis does not fully explain the disproportionately greater increases in CMRglc above that of CMRO2 in functionally activated brain. These results also suggest that the apparent dissociation between glucose utilization and O2 consumption during functional activation reflects only a temporal displacement; during activation, glycolysis increases more than oxidative metabolism, leading to accumulation of products in intermediary metabolic pools that are subsequently consumed and oxidized during recovery.


Sign in / Sign up

Export Citation Format

Share Document