scholarly journals Toxic Effects of Amanitins: Repurposing Toxicities toward New Therapeutics

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 417
Author(s):  
Brendan Le Daré ◽  
Pierre-Jean Ferron ◽  
Thomas Gicquel

The consumption of mushrooms has become increasingly popular, partly due to their nutritional and medicinal properties. This has increased the risk of confusion during picking, and thus of intoxication. In France, about 1300 cases of intoxication are observed each year, with deaths being mostly attributed to Amanita phalloides poisoning. Among amatoxins, α- and β-amanitins are the most widely studied toxins. Hepatotoxicity is the hallmark of these compounds, leading to hepatocellular failure within three days of ingestion. The toxic mechanisms of action mainly include RNA polymerase II inhibition and oxidative stress generation, leading to hepatic cell apoptosis or necrosis depending on the doses ingested. Currently, there is no international consensus concerning Amanita phalloides poisoning management. However, antidotes with antioxidant properties remain the most effective therapeutics to date suggesting the predominant role of oxidative stress in the pathophysiology. The partially elucidated mechanisms of action may reveal a suitable target for the development of an antidote. The aim of this review is to present an overview of the knowledge on amanitins, including the latest advances that could allow the proposal of new innovative and effective therapeutics.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1136
Author(s):  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
Manuela Plutino ◽  
Giuseppe Pignatti ◽  
Ioannis K. Karabagias ◽  
...  

Plant species are fundamental source of nectar in beekeeping since bees access nectar and pollen from flowers. Consequently, bee products are strongly linked to the bee foraging flora source, and, depending on this, they acquire defined features, including their health and medicinal properties. Medicinal plants contribute greatly to increase the beneficial properties of bee products, such as honey, pollen, royal jelly, and propolis. Bee products represent a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. The antioxidant properties of bee products have been widely studied and there is an abundance of information available in the literature. Notwithstanding, the uniqueness of the presented perspective is to provide an updated overview of the antioxidant properties of bee products derived from medicinal plants as beekeeping sources. This topic is divided and discussed in the text in different sections as follows: (i) beekeeping and the impacts of environmental factors; (ii) an overview of the role of medicinal plants for bee products; (iii) definition and categorization of the main medicinal bee plants and related bee products; (iv) the study approach of the antioxidant properties; (v) the conventional and innovative assays used for the measurement of the antioxidant activity; and (vi) the antioxidant properties of bee products from medicinal plants.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


2019 ◽  
Vol 41 (5) ◽  
pp. 859-859
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Saeeda Bano Saeeda Bano ◽  
Samina Iqbal Samina Iqbal ◽  
...  

Acute exposure to stress is connected to many disorders that promote the toxicity of oxygen radical generators leading to increase in the levels of enzymes and also the activation of the HPA axis. The present study uses a preclinical approach to elucidate some prospective stress-induced behavioral and biochemical effects. The aim of current study was to investigate the relationship between stress and behavioral changes after exposing animals to 2h immobilization stress. We also evaluated the concentration of corticosterone, glucose and endogenous leptin levels in unstressed and stressed animals to explore the possible role of HPA axis in the modulation of stressed induced behavioral deficits. Rats were divided into stressed and unstressed groups. Behavioral activities were monitored in open field activity and light dark transition box after the termination of 2h immobilization period. Animals were then decapitated and plasma samples were collected for catalase, SOD, corticosterone, and glucose estimation. Results showed that exposure to acute stress produced a significant decrease in the activity of rats in the novel environment (open field) and light dark transition box. On the other hand, concomitant elevated level of peripheral markers of oxidative stress such as oxidative enzymes, corticosterone and endogenous leptin were also observed. Therefore, current study seems to suggest an important role of compounds having antioxidant properties for the treatment of stress and related disorders.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wuyang Huang ◽  
Yunming Zhu ◽  
Chunyang Li ◽  
Zhongquan Sui ◽  
Weihong Min

The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress.


Toxicology ◽  
2010 ◽  
Vol 271 (3) ◽  
pp. 83-86 ◽  
Author(s):  
C. Costa ◽  
S. Catania ◽  
R. De Pasquale ◽  
R. Stancanelli ◽  
G.M. Scribano ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Francesca Bonomini ◽  
Gaia Favero ◽  
Luigi Fabrizio Rodella ◽  
Mohammed H. Moghadasian ◽  
Rita Rezzani

Hypercholesterolemia increases and exacerbates stress signals leading also to liver damage (LD) and failure. Sirtuin1 (SIRT1) is involved in lifespan extension and it plays an essential role in hepatic lipid metabolism. However, its involvement in liver hypercholesterolemic damage is not yet completely defined. This in vivo study evaluated the role of SIRT1 in the hypercholesterolemic-related LD and, then, investigated how oral supplementation of melatonin, pleiotropic indoleamine, may be protective. Control mice and apolipoprotein E-deficient mice (ApoE−/−) of 6 and 15 weeks of age were treated or not treated with melatonin at the dose of 10 mg/kg/day for 9 weeks. In this study, we evaluated serum biochemical markers, liver SIRT1 expression, and oxidative stress markers. We observed that hypercholesterolemia increased significantly serum cholesterol and triglycerides, reduced significantly liver SIRT1, and, in turn, induced hepatic oxidative stress in untreated ApoE−/− mice with respect to control mice. Interestingly, melatonin treatment improved serum biochemical markers and hepatic morphological impairment and inhibited oxidative stress through its antioxidant properties and also by SIRT1 upregulation. In summary, melatonin oral supplementation may represent a new protective approach to block hypercholesterolemic liver alterations involving also a SIRT1-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document