scholarly journals Holographic Interpretation of Relative State Complexity

Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 100
Author(s):  
Alexander Yosifov ◽  
Aditya Iyer ◽  
Lachezar Filipov

We investigate a large-N conformal field theory (CFT) in a high-energy pure state coupled to a small auxiliary system of M weakly-interacting degrees of freedom, and argue the relative state complexity of the auxiliary system is holographically dual to an effective low-energy notion of computational cost in the bulk, i.e., to the minimal depth of the quantum circuit required to decode its gravitational dual. In light of this, using Nielsen’s approach, a new measure of quantum chaos in terms of the evolution of circuit complexity is proposed. It suggests that studying the evolution of circuit complexity of the auxiliary system can teach us about the chaotic properties of the large-N CFT. This new diagnostic for quantum chaos has important implications for the interior dynamics of evaporating black holes as it implies the radiated Hawking cloud is pseudorandom.

2021 ◽  
Vol 251 ◽  
pp. 03023
Author(s):  
Wonho Jang ◽  
Koji Terashi ◽  
Masahiko Saito ◽  
Christian W. Bauer ◽  
Benjamin Nachman ◽  
...  

There is no unique way to encode a quantum algorithm into a quantum circuit. With limited qubit counts, connectivities, and coherence times, circuit optimization is essential to make the best use of quantum devices produced over a next decade. We introduce two separate ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL. The first ingredient is a technique to recognize repeated patterns of quantum gates, opening up the possibility of future hardware optimization. The second ingredient is an approach to reduce circuit complexity by identifying zero- or low-amplitude computational basis states and redundant gates. As a demonstration, AQCEL is deployed on an iterative and effcient quantum algorithm designed to model final state radiation in high energy physics. For this algorithm, our optimization scheme brings a significant reduction in the gate count without losing any accuracy compared to the original circuit. Additionally, we have investigated whether this can be demonstrated on a quantum computer using polynomial resources. Our technique is generic and can be useful for a wide variety of quantum algorithms.


Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Chaya Stern ◽  
mudong feng ◽  
Lee-Ping Wang

<div>The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.</div><div>Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.</div><div>To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.</div><div>However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.</div><div>In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.</div><div>The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.</div><div>The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</div>


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract


2020 ◽  
Vol 15 (1) ◽  
pp. 143-156
Author(s):  
Jean-François Biasse ◽  
Benjamin Pring

AbstractIn this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from $O\left(2^{n/2}\cdot mC\right)$ (where C originates from the cost of implementing the quantum oracle) to $O(2^{n/2} \cdot m\sqrt{C})$ without the use of quantum ram, whilst also slightly reducing the number of required qubits.This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specification [14].


2015 ◽  
Vol 769 ◽  
pp. 369-386 ◽  
Author(s):  
A. Lefebvre-Lepot ◽  
B. Merlet ◽  
T. N. Nguyen

We address the problem of computing the hydrodynamic forces and torques among $N$ solid spherical particles moving with given rotational and translational velocities in Stokes flow. We consider the original fluid–particle model without introducing new hypotheses or models. Our method includes the singular lubrication interactions which may occur when some particles come close to one another. The main new feature is that short-range interactions are propagated to the whole flow, including accurately the many-body lubrication interactions. The method builds on a pre-existing fluid solver and is flexible with respect to the choice of this solver. The error is the error generated by the fluid solver when computing non-singular flows (i.e. with negligible short-range interactions). Therefore, only a small number of degrees of freedom are required and we obtain very accurate simulations within a reasonable computational cost. Our method is closely related to a method proposed by Sangani & Mo (Phys. Fluids, vol. 6, 1994, pp. 1653–1662) but, in contrast with the latter, it does not require parameter tuning. We compare our method with the Stokesian dynamics of Durlofsky et al. (J. Fluid Mech., vol. 180, 1987, pp. 21–49) and show the higher accuracy of the former (both by analysis and by numerical experiments).


2021 ◽  
Author(s):  
◽  
Lukas Weih

High-energy astrophysics plays an increasingly important role in the understanding of our universe. On one hand, this is due to ground-breaking observations, like the gravitational-wave detections of the LIGO and Virgo network or the black-hole shadow observations of the EHT collaboration. On the other hand, the field of numerical relativity has reached a level of sophistication that allows for realistic simulations that include all four fundamental forces of nature. A prime example of how observations and theory complement each other can be seen in the studies following GW170817, the first detection of gravitational waves from a binary neutron-star merger. The same detection is also the chronological starting point of this Thesis. The plethora of information and constraints on nuclear physics derived from GW170817 in conjunction with theoretical computations will be presented in the first part of this Thesis. The second part goes beyond this detection and prepares for future observations when also the high-frequency postmerger signal will become detectable. Specifically, signatures of a quark-hadron phase transition are discussed and the specific case of a delayed phase transition is analyzed in detail. Finally, the third part of this Thesis focuses on the inclusion of radiative transport in numerical astrophysics. In the context of binary neutron-star mergers, radiation in the form of neutrinos is crucial for realistic long-term simulations. Two methods are introduced for treating radiation: the approximate state-of-the-art two-moment method (M1) and the recently developed radiative Lattice-Boltzmann method. The latter promises to be more accurate than M1 at a comparable computational cost. Given that most methods for radiative transport or either inaccurate or unfeasible, the derivation of this new method represents a novel and possibly paradigm-changing contribution to an accurate inclusion of radiation in numerical astrophysics.


2018 ◽  
Vol 26 (01) ◽  
pp. 1750030 ◽  
Author(s):  
V. Hernández ◽  
J. Estrada ◽  
E. Moreno ◽  
S. Rodríguez ◽  
A. Mansur

Ultrasonic guided waves propagating along large structures have great potential as a nondestructive evaluation method. In this context, it is very important to obtain the dispersion curves, which depend on the cross-section of the structure. In this paper, we compute dispersion curves along infinite isotropic plate-like structures using the semi-analytical method (SAFEM) with an isogeometric approach based on B-spline functions. The SAFEM method leads to a family of generalized eigenvalue problems depending on the wave number. For a prescribed wave number, the solution of this problem consists of the nodal displacement vector and the frequency of the guided wave. In this work, the results obtained with B-splines shape functions are compared to the numerical SAFEM solution with quadratic Lagrange shape functions. Advantages of the isogeometric approach are highlighted and include the smoothness of the displacement field components and the computational cost of solving the corresponding generalized eigenvalue problems. Finally, we investigate the convergence of Lagrange and B-spline approaches when the number of degrees of freedom grows. The study shows that cubic B-spline functions provide the best solution with the smallest relative errors for a given number of degrees of freedom.


Author(s):  
L. Beji ◽  
M. Pascal ◽  
P. Joli

Abstract In this paper, an architecture of a six degrees of freedom (dof) parallel robot and three limbs is described. The robot is called Space Manipulator (SM). In a first step, the inverse kinematic problem for the robot is solved in closed form solution. Further, we need to inverse only a 3 × 3 passive jacobian matrix to solve the direct kinematic problem. In a second step, the dynamic equations are derived by using the Lagrangian formalism where the coordinates are the passive and active joint coordinates. Based on geometrical properties of the robot, the equations of motion are derived in terms of only 9 coordinates related by 3 kinematic constraints. The computational cost of the obtained dynamic model is reduced by using a minimum set of base inertial parameters.


Sign in / Sign up

Export Citation Format

Share Document