scholarly journals The Interplay between Host Innate Immunity and Hepatitis E Virus

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 541 ◽  
Author(s):  
Yang Li ◽  
Changbo Qu ◽  
Peifa Yu ◽  
Xumin Ou ◽  
Qiuwei Pan ◽  
...  

Hepatitis E virus (HEV) infection represents an emerging global health issue, whereas the clinical outcomes vary dramatically among different populations. The host innate immune system provides a first-line defense against the infection, but dysregulation may partially contribute to severe pathogenesis. A growing body of evidence has indicated the active response of the host innate immunity to HEV infection both in experimental models and in patients. In turn, HEV has developed sophisticated strategies to counteract the host immune system. In this review, we aim to comprehensively decipher the processes of pathogen recognition, interferon, and inflammatory responses, and the involvement of innate immune cells in HEV infection. We further discuss their implications in understanding the pathogenic mechanisms and developing antiviral therapies.

Author(s):  
MURUGAN NANDAGOPAL ◽  
ARULMOZHI BALAKRISHNAN ◽  
CHIRAYU PADHIAR

The coronavirus disease-2019 (COVID-19) outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or a novel coronavirus (2019-CoV) has prompted global health concerns. A pandemic resulted from the disease’s transmission through many routes. In this pandemic, the interaction between coronavirus and the host immune system, particularly the innate immune system, is becoming more prominent. Against viruses and pathogens, innate immunity serves as a first line of defense. Our understanding of pathogenesis will benefit from a better grasp of the mechanisms of immune evasion techniques. The origin, classification, structure, and method of transmission of SARS-CoV-2 were summarized in this paper. We have discussed the importance of important communications. In this review, we have discussed the function of important components of the innate immune system in COVID-19 infection, as well as how the virus evades innate immunity through multiple tactics and contributes to a wide range of clinical symptoms and outcomes.


2021 ◽  
Author(s):  
Phillip Wibisono ◽  
Shawndra Wibisono ◽  
Jan Watteyne ◽  
Chia-Hui Chen ◽  
Durai Sellegounder ◽  
...  

A key question in current immunology is how the innate immune system generates high levels of specificity. Like most invertebrates, Caenorhabditis elegans does not have an adaptive immune system and relies solely on innate immunity to defend itself against pathogen attacks, yet it can still differentiate different pathogens and launch distinct innate immune responses. Here, we have found that functional loss of NMUR-1, a neuronal GPCR homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans survival against various bacterial pathogens. Transcriptomic analyses and functional assays revealed that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors, which, in turn, controls the expression of distinct immune genes in response to different pathogens. Our study has uncovered a molecular basis for the specificity of C. elegans innate immunity that could provide mechanistic insights into understanding the specificity of vertebrate innate immunity.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


Author(s):  
Dalia Cicily Kattiparambil Dixon ◽  
Chameli Ratan ◽  
Bhagyalakshmi Nair ◽  
Sabitha Mangalath ◽  
Rachy Abraham ◽  
...  

: Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and respond with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain(NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARS-CoV2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenjin Zheng ◽  
Qing Xu ◽  
Yiyuan Zhang ◽  
Xiaofei E ◽  
Wei Gao ◽  
...  

Abstract Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Eriko Tanaka ◽  
Ichiro Hada ◽  
Naoaki Mikami ◽  
Kunimasa Yan

Abstract Background and Aims Pathogenesis of idiopathic nephrotic syndrome (INS) is yet to be fully elucidated. Immunological disorders are reported to be involved in the etiology of INS. Due to the efficacy of immunosuppressant agents such as calcineurin inhibitor and rituximab in treating nephrotic syndrome, aberrant activation of the acquired immune system through T and B cells are considered to be the underlying pathogenic mechanisms of INS. Nevertheless, there is a possibility that the innate immune system plays a key role in INS pathogenesis. This study aims to investigate the involvement of innate immunity in INS pathogenesis by examining the expressions of toll-like receptors (TLRs). Method Kidney tissue samples from two INS patients were collected at two points of time: the first biopsy was performed during nephrosis and the second during remission. Total RNA was extracted from the kidney tissue samples, and RNA-sequencing was performed to investigate RNA expression profiles. The differences between RNA expression profiles of TLRs and molecules related to TLR pathways in the tissue samples collected during nephrosis and remission were analyzed. Results There was a significant decrease in RNA expression of TLR9 and TLR10 during remission compared to nephrosis: fold change in each patient was -2.12 and -2.12 for TLR9, and -2.51 and -2.09 for TLR10. RNA expression of TLR8 also decreased: fold change in each patient was -1.19 and -1.75. There were no significant changes in the RNA expression profiles of TLR1, 2, 3, 4, 5, 6, and 7. In addition, there were no differences in the RNA expression profiles of MYD88, IRAK family, and TRAF family molecules that are associated with TLR pathways. However, RNA expressions of IL6, IL1B, IL12B, and TNF, as well as the cytokines controlled by TLR8 and TLR9 pathways, which were activated during nephrosis, disappeared or decreased during remission. Conclusion The involvement of the innate immune system in the pathogenesis of nephrotic syndrome has been suggested in some reports. Based on the fact that the onset or recurrence of nephrosis is triggered by non-specific viral infection, it is highly possible that innate immunity is involved in the pathogenesis of nephrotic syndrome. TLRs play a key role in innate immunity as they elicit the innate immune system after detecting pathogens, induce inflammatory cytokine production, and trigger signaling pathways that activate lymphocytes via maturation of dendritic cells. Specifically, TLR8, 9, and 10 mediate pathways of the first immune response to viral infections. Our study reveals that TLRs play a pivotal role in innate immunity associated with renal tissue during the onset of nephrosis.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 94 ◽  
Author(s):  
Ashley S. Brott ◽  
Anthony J. Clarke

The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ling-Dong Xu ◽  
Fei Zhang ◽  
Lei Peng ◽  
Wen-Ting Luo ◽  
Chu Chen ◽  
...  

Hepatitis E virus (HEV) is one of the major etiological agents responsible for acute hepatitis. Hepatitis E virus does not replicate efficiently in mammalian cell cultures, thus a useful model that mimics persistent HEV replication is needed to dissect the molecular mechanism of pathogenesis. Here we report a genotype-3 HEV RNA replicon expressing an EGFP-Zeocin (EZ) resistant gene (p6-EZ) that persistently self-replicated in cell lines of human (Huh-7-S10-3) or hamster (BHK-21) origin after transfection with in vitro RNA transcripts and subsequent drug screening. Two cell lines, S10-3-EZ and BHK-21-EZ, stably expressed EGFP in the presence of Zeocin during continuous passages. Both genomic and subgenomic HEV RNAs and viral replicase proteins were stably expressed in persistent HEV replicon cells. The values of the cell models in antiviral testing, innate immune RNA sensing and type I IFN in host defense were further demonstrated. We revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host antiviral innate immune sensing during HEV replication. We further demonstrated that treatment with interferon (IFN-α) or ribavirin significantly reduced expression of replicon RNA in a dose-dependent manner. The availability of the models will greatly facilitate HEV-specific antiviral development, and delineate mechanisms of HEV replication.


2019 ◽  
Vol 59 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Nikki Traylor-Knowles ◽  
Lauren E Vandepas ◽  
William E Browne

Abstract Innate immunity is an ancient physiological response critical for protecting metazoans from invading pathogens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system. Here, we review current understanding of the ctenophore immune repertoire and identify innate immunity genes recovered from three ctenophore species. We also isolate and characterize Mnemiopsis leidyi cells that display macrophage-like behavior when challenged with bacteria. Our results indicate that ctenophores possess cells capable of phagocytosing microbes and that two distantly related ctenophores, M. leidyi and Hormiphora californiensis, possess many candidate innate immunity proteins.


Sign in / Sign up

Export Citation Format

Share Document