scholarly journals A Study on the Influence of Tire Speed and Pressure on Measurement Parameters Obtained from High-Speed Tire Uniformity Testing

Vehicles ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 559-573
Author(s):  
Meng Du ◽  
Pengfei Sun ◽  
Shuiting Zhou ◽  
Hongwu Huang ◽  
Jie Zhu

In order to improve the test conditions of the tire uniformity test and the effect of the speed and tire pressure on the uniformity parameters, the uniformity test of the tire under different speeds and tire pressure was carried out by a high-speed uniformity test machine, and the experimental data were analyzed and fitted by the regression analysis method. This paper introduces the definition of uniformity and the uniformity parameters of automotive tires; the working principle of a high-speed uniformity testing machine is briefly described, a mathematical model of the uniformity testing machine is established, and the signal acquisition process of the tire uniformity parameters and the calculation method of the uniformity parameters are described. The test result indicates: As the speed increases, the radial force fluctuation, lateral force fluctuation, tangential force fluctuation, and turning torque fluctuation of the tire increase, and the positive torque fluctuation first increases and then decreases; with the increase of tire pressure, the radial force fluctuation and the tangential force fluctuation of the tire increase, and the lateral force fluctuation, the turning torque fluctuation, and the returning moment fluctuation are all reduced. Compared to the low speed uniformity test, the high speed uniformity test can better reflect the uniformity of the tire, reducing the speed of the vehicle can reduce the radial runout and lateral sway of the tire; increasing the tire pressure can reduce the left and right swing of the vehicle.

2011 ◽  
Vol 221 ◽  
pp. 343-349 ◽  
Author(s):  
Bai Lin Hang ◽  
Zhen Ya Duan

Force model of tire uniformity testing system and data analysis method are fundamental to a tire uniformity testing machine. Based on theoretical analysis, this paper proposes a two-dimensional force model to calculate tire’s radial and lateral force, confirm the mechanical structures of the existing tire uniformity testing machine’s testing system and verify the validity of its testing method by the model. According to this two-dimensional force model and FFT data analysis method, the YLJ series tire uniformity testing machine is developed. It is mainly applied for fully auto online uniformity test and size deviation. The authors also explained the operational principle, data measurement and analysis procedure of the YLJ series tire uniformity testing machine.


1987 ◽  
Vol 109 (1) ◽  
pp. 164-168 ◽  
Author(s):  
Chiao-Ping Ku ◽  
John A. Tichy

The one-dimensional squeeze film damper is modeled for high speed flow by using the two-equation (k-ε) turbulent transport model. The assumption is made that the fluid flow at each local region of the squeeze film damper has similar behavior to inertialess flow in a channel at comparable Reynolds number. Using the k-ε model, the inertialess channel flow case is solved. Based on this result, correlations are obtained for the mean velocity, inertia and viscous terms of the integrated momentum equation for the squeeze film damper. It is found that turbulence increases the magnitude of the fluid pressure and the tangential force, while fluid inertia causes a shift on the pressure creating a significant radial force. In applications, turbulence may be a beneficial effect, increasing the principal damping force; while inertia may be detrimental increasing the cross-coupling forces.


2020 ◽  
Vol 319 ◽  
pp. 04002
Author(s):  
K. X. Kang ◽  
B. He ◽  
S. J. Wang

This Effects of cutting angle of conical picks affecting on rock breaking capacity was researched to calculate the low construction efficiency of the conical picks at hard rock cutting. Firstly, according to the construction situation of the conical picks, the rotary milling test bench of rock was built. Secondly, the physical and mechanical properties of four kinds of rocks (blue sandstone, red sandstone, limestone, granite.) were measured, and the brittleness index of the four kinds of rocks was calculated. Finally, four kinds of rocks were tested at six cutting angles, respectively. The results of the experiments indicate that the radial force is the largest, the tangential fore is the second, and the lateral force is the smallest in the three-axis of the pick against the four rocks over 50MPa. With the increase of the rock compressive strength, the ratio of radial force to tangential force increases gradually. Therefore, more down-force of machine is needed to improve the impact penetration ability of the pick. Taking milling resistance and specific energy consumption as index, the cutting angle of 63 for the green sandstone and red sandstone, and the cutting angle of 58 for the limestone and granite are helpful to improve the operation efficiency of the whole machine.


2021 ◽  
Vol 1037 ◽  
pp. 245-250
Author(s):  
Sergey V. Fedorov ◽  
Tet Oo ◽  
Enver S. Mustafaev

Despite the advanced development in the field of creating new hard-alloy and ceramic tool materials, the use of modern high-speed steels has not yet lost its relevance, and it is especially true for the production of small batches of costly specialized tools, especially since modern strengthening technologies can make it competitive. For example, additive production systems associated with laser or electron beam manufacturing methods create products, including Ti-6Al-4V alloy, with low surface quality, and it is still necessary to apply the additional cutting treatment. The features of milling titanium alloy obtained by the electron beam melting method were revealed. It is determined that the force parameters differ from those in the processing of metal obtained by traditional technologies. Thus, the component of cutting tangential force FT increases by approximately 15%. At the same time, a 20% drop in the radial force FR observed


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1317
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a high-speed rail grinding maintenance strategy, which is completely different from the conventional rail active grinding system. In contrast to active grinding, there is no power to drive the grinding wheel to rotate actively in passive grinding. The passive grinding process is realized only by the cooperation of grinding pressure, relative motion, and deflection angle. Grinding tests for passive grinding can help to improve the passive grinding process specifications and be used for the development of passive grinding wheels. However, most of the known grinding methods are active grinding, while the passive grinding machines and processes are rarely studied. Therefore, a passive grinding test machine was designed to simulate passive grinding in this study. This paper gives a detailed description and explanation of the structure and function of the passive grinding tester. Moreover, the characteristics of the grinding process and parameter settings of the testing machine were discussed based on the passive grinding principle. The design of a passive grinding test machine provides experimental equipment support for investigating passive grinding behavior and grinding process.


Author(s):  
Thomas L. Davies ◽  
Tami F. Wall ◽  
Allan Carpentier

After examination of the research carried out by other agencies, Saskatchewan Highways and Transportation (SHT) embarked on an initiative to adapt low tire pressure technologies to the province's needs and environment. The focus of the initiative was to explore several technical questions from SHT's perspective: (a) Can low tire pressures be used to increase truck weights from secondary to primary without increasing road maintenance costs on thin membrane surface roads? (b) What are the short- and long-term effects of tire heating under high-speed/high-deflection constant reduced pressure (CRP) operations in a Saskatchewan environment? (c) What effects do lower tire pressures have on vehicle stability at highway speeds? To date, significant opportunities have been noted on local hauls (less than 30 min loaded at highway speeds) for CRP operation and long primary highway hauls that begin or end in relatively short secondary highway sections that limit vehicle weight allowed for the whole trip for central tire inflation technology. The background and environment for the initiative and the investigations and demonstrations envisioned and undertaken are briefly outlined.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098468
Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Yijiang Ma ◽  
Hongxun Fu

The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.


2021 ◽  
pp. 107754632110260
Author(s):  
Zhaoxue Deng ◽  
Xu Li ◽  
Tianqin Liu ◽  
Shuen Zhao

Considering the negative vertical dynamics effect of switched reluctance motor on an in-wheel motor driving system, this article presents a modeling and suppression method for unbalanced radial force of the in-wheel motor driving system. To tease out the coupling relationship within the in-wheel motor driving system, this investigation, respectively, explores the principle of unbalanced radial force and the coupling relationship between rotor eccentricity and road excitation based on the suspension response model with unbalanced radial force under road excitation. The switched reluctance motor nonlinear analytical model was fitted by the Fourier series, and its radial electromagnetic force was modeled and analyzed by the Maxwell stress tensor method. To mitigate the influence of radial electromagnetic force fluctuation and unbalanced radial force amplitude value under eccentricity condition on the in-wheel motor driving system, the elitist non-dominated sorting genetic algorithm was adopted to improve radial electromagnetic force fluctuation and unbalanced radial force amplitude value of the switched reluctance motor. The simulation results show that the proposed optimization method can suppress the radial electromagnetic force fluctuation and unbalanced radial force amplitude value, and the negative effect of vertical dynamics of the in-wheel motor driving system is conspicuously mitigated.


2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


Sign in / Sign up

Export Citation Format

Share Document