scholarly journals A Study on Performance Evaluation of Biodiesel from Grape Seed Oil and Its Blends for Diesel Vehicles

Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 790-806
Author(s):  
Adebayo Fadairo ◽  
Weng Fai Ip

With incessant increases in fuel prices worldwide and concerns for environmental pollution, the need for alternative sources of energy is becoming urgent. In this study, the potential of grape seed oil for biodiesel as an alternative fuel was evaluated. Refined grape seed oil was bought in liquid form and then subjected to an alkali-catalyzed transesterification process for biodiesel production. The physicochemical properties of the resulting biodiesel—namely, viscosity, cetane number, and heating value—were investigated. The biodiesel was blended with a conventional diesel in various proportions and combusted in a four-cylinder, four-stroke compression ignition (diesel) engine under two loading conditions. Experimental results revealed that the blend ratio of B70 (70% GS biodiesel and 30% conventional diesel) gave the best overall engine performance in terms of maximum power, minimum emissions, and fuel consumption. Furthermore, a novel neural network technique called extreme learning machine was adopted to investigate the optimal blend ratio using the dataset obtained from the experimental results. The results also indicate that the best choice of biodiesel blend ratio is approximately B73.67 (73.67% GS biodiesel and 26.33% conventional diesel). The study shows that grape seed oil could serve as a reliable source of production of quality biodiesel fuels, which could be used as an alternative to conventional diesel fuels.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magín Lapuerta ◽  
José Rodríguez-Fernández ◽  
Ángel Ramos ◽  
David Donoso ◽  
Laureano Canoira

AbstractResidues from the wine industry constitute an abundant feedstock for biodiesel production in wine-producing countries. The use of grapeseed oil, together with bioethanol obtained from distillation of wine surplus or grape skins and stalks and wine lees, as reagents in the transesterification reaction, results in a mixture of fatty acid ethyl esters (FAEE), which is a fully renewable, autochthonous, and waste-derived biofuel. In this work, a blend of FAEE produced from grape seed oil with diesel fuel was selected based on a study of fuel properties, and the optimal blend, with 30% v/v of FAEE, was tested in a Euro 6 engine following the Worldwide harmonized Light-duty Test Cycle (WLTC) and a Real Driving Emissions Cycle (RDE), as required in the new certification procedures. Engine performance and emissions from this blend and a commercial diesel fuel were compared. The FAEE blend showed a significant potential to reduce particle emissions, both in mass and number (from 23% in number to 46.5% in mass for WLTC, and from 56% in number to 61% in mass for RDE), and CO (25.5% for WLTC and 39% for RDE) but penalized NOx (32% higher in WLTC and 26.4% higher in RDE).


Author(s):  
Gurpinder Singh ◽  
Saroj Kumar Mohapatra ◽  
Satishchandra S. Ragit ◽  
Krishnendu Kundu

2018 ◽  
Vol 10 (6) ◽  
pp. 194
Author(s):  
Silvia Surini ◽  
Fariha Ulfah Azzahrah ◽  
Delly Ramadon

Objective: Grape seed oil (GSO) from Vitis vinifera L. is a liquid vegetable oil which has been used mainly for its linoleic acid content. However, there are many efforts to convert the liquid form of the oil into a solid form due to the instability under storage condition. The aim of this study was to convert GSO into the solid microcapsules by emulsion crosslinking method with gum arabic as a coating polymer.Methods: The GSO was formulated with gum arabic in the ratios of 1:2, 1:3, 1:4, and 1:5. Gum arabic solution was emulsified with GSO using Span 80 and glutaraldehyde. The emulsion was dropped into a beaker glass of isopropyl alcohol to form microcapsules. The microcapsules were dried at 70 °C. Then, they were characterized in terms of morphology, particle size, swelling index, water content, and entrapment efficiency.Results: The produced microcapsules of GSO showed white yellowish color and spherical shape. The particle size of F1, F2, F3 and F4 microcapsules were 69 μm, 82 μm, 125 μm, and 131 μm, respectively. The water content of the F1–F4 ranged from 4.37±0.34 to 5.70±0.92% and swelling indexes were ranged from 5.54±0.01 to 5.94±0.04. The value of entrapment efficiency of F1, F2, F3, and F4 were 17.33±0.603, 20.73±0.678, 34.22±1.195, and 67.15±2.019%, respectively.Conclusion: The results of this investigation showed that GSO could be converted into the solid spherical microcapsules by emulsion crosslinking method using gum arabic. Taken together, this study has provided the most promising formulation of GSO microcapsules for further production in pharmaceutical industry.


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


2020 ◽  
Vol 57 (3) ◽  
Author(s):  
Sahar Hassan Orabi ◽  
Sherif Mohamed Shawky

The current study focused on investigating the renoprotective effects of grape seed oil (GSO) against hexavalent chromium (Cr (VI))-induced nephrotoxicity. A total of 40 male rats were randomly divided into four groups: group I served as the control group, group II received 1000 mg/L potassium dichromate (353.5 mg/L Cr(VI)) in drinking water for 12 weeks, group III received 3.7 g/kg body weight/day GSO orally for 12 weeks, and group IV received GSO together with potassium dichromate for 12 weeks. Cr(VI) significantly increased serum levels of urea, creatinine, potassium and glucose. In addition, Cr(VI) increased MDA levels and induced renal tissue damage and DNA damage. On the other hand, Cr(VI) decreased serum levels of sodium and antioxidant defence system [reduced glutathione (GSH) and catalase (CAT)]. However, treatment with GSO prevented elevation levels of serum urea, creatinine, potassium and glucose. In addition, GSO enhanced sodium level, renal tissue antioxidant defense system due to its curative effect ameliorated particularly oxidative stress, renal tissue and DNA damage. In conclusion, these results demonstrate that GSO is a promising nephroprotective agent against Cr(VI)-induced nephrotoxicity.Key words: grape seed oil; hexavalent chromium; nephrotoxicity; DNA damage BLAŽILNI UČINKI OLJA GROZDNIH PEŠK PRI TOKSIČNI OBREMENITVI LEDVIC TER VPLIV NA OKSIDATIVNI STRES PODGAN, POVZROČEN S KROMOM Povzetek: Študija je bila osredotočena na proučevanje zaščitnih učinkov olja grozdnih pešk (GSO) pri toksični obremenitvi ledvic, povzročeni s heksavalentnim kromom (Cr (VI)). Štirideset samcev podgan je bilo naključno razdeljenih v štiri skupine: skupina I - kontrolna skupina, skupina II, ki je v pitni vodi 12 tednov prejemala 1000 mg/L kalijevega dikromata (353,5 mg/L Cr (VI)), skupina III, ki je peroralno 12 tednov prejemala 3,7 g/kg telesne mase/dan GSO ter skupina IV, ki je 12 tednov prejemala GSO skupaj s kalijevim dikromatom. Cr(VI) je znatno zvišal serumske ravni sečnine, kreatinina, kalija in glukoze v serumu. Poleg tega je Cr(VI) zvišal raven MDA in povzročil poškodbe ledvičnega tkiva in poškodbe DNK. Po drugi strani je Cr(VI) znižal serumsko raven natrija in antioksidativnega obrambnega sistema, zmanjšal raven glutationske peroksidaze in katalaze. Dodajanje GSO poskusnim živalim je preprečilo zvišanje ravni sečnine v serumu, kreatinina, kalija, natrija in glukoze. Poleg tega je GSO izboljšal obrambni sistem antioksidantov ledvičnega tkiva. Zaradi svojega zdravilnega učinka je izboljšal zlasti oksidativni stres, poškodbe ledvičnega tkiva in DNK. Rezultati kažejo, da je GSO obetavno zaščitno sredstvo za ledvica pri toksični obremenitvi, povzročeni s Cr(VI).Ključne besede: olje grozdnih pešk; heksavalentni krom; nefrotoksičnost; poškodba DNK


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 30
Author(s):  
Viktória Kapcsándi ◽  
Erika Hanczné Lakatos ◽  
Beatrix Sik ◽  
László Ádám Linka ◽  
Rita Székelyhidi

In this study, we examined the yield and oil quality of eight different grape varieties. For the experiments, the grape seeds were obtained from the Benedictine Pannonhalma Archabbey in the northwestern region of Hungary. The aim of the studies was to determine the oil yield obtained by extraction and to examine the differences between the fatty acid composition, antioxidant capacity, and total polyphenol content of the oils of different grape varieties. Based on the results, the oil content of the grape seeds varied between 99.91 g/kg and 126.74 g/kg. The grape seed oils analysed contained significant amounts of stearic acid (3.42–9.93%), palmitic acid (7.81–10.66%), oleic acid (14.29–19.92%), and linoleic acid (66.85–72.47%). Besides, the grape seed oils tested contained several other fatty acids in small amounts. There were significant differences in the total antioxidant and total polyphenol content of the oils. Total polyphenol content ranged from 0.24 to 1.13 mg GAE/g, while the total antioxidant content changed between 0.12 and 0.78 μg TEAC/g. The results show that the studied varieties are suitable for the production of table grape seed oil based on their oil yield, and the oils have favourable, health-protecting properties in terms of their quality.


2019 ◽  
Vol 7 (2) ◽  
pp. 087-094
Author(s):  
Mai Mohsen El Maghraby ◽  
Nada Mosaad El Maghraby ◽  
Ameera Ahmed Salama ◽  
Azza Shawky Abdlmonem ◽  
Eman Abdellatefe Authman ◽  
...  

2015 ◽  
Vol 34 ◽  
pp. 7-14
Author(s):  
Prithviraj Bhandare ◽  
G.R. Naik

Fossil fuel resources are decreasing daily while biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. In this experiment the seed oils of 30 Neem (Azadirachta indica. A. juss) biotypes were screened and evaluated for their physio-chemical parameters for oil content, biodiesel yield, density, viscosity, iodine value , free fatty acid and saponification value. Hence the neem seed oil tested in this current study could be the potential sources of raw material for biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document