scholarly journals Irrigation Factor Approach Based on Soil Water Content: A Nectarine Orchard Case Study

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 589 ◽  
Author(s):  
Juan Vera ◽  
Wenceslao Conejero ◽  
María Conesa ◽  
M. Ruiz-Sánchez

Precision agriculture requires irrigation supported by an accurate knowledge of the crop water requirements. In this paper, a novel approach for drip irrigation scheduling of fruit trees is presented based on the results obtained during a full growing season in an early-maturing nectarine orchard growing in a clay loam soil in a Mediterranean environment. Real-time water content was monitored in the soil profile of the main root exploration zone by means of capacitance probes; in addition, plant water status (midday stem water potential and leaf gas exchange) and canopy development were frequently measured throughout the vegetative cycle. The reference evapotranspiration (ET0) values, taken from a nearby automatic meteorological station, and the measured irrigation values allowed the determination of the irrigation factors once irrigation drainage during the season was assumed to be negligible and plant water status was proved to be adequate. The proposed irrigation factors offer a hands-on approach as an easy tool for irrigation management based on suitable soil water deficits, allowing the water requirements of nectarine trees under precision irrigation to be determined in semi-arid agrosystems where water resources are limited.

2021 ◽  
Vol 47 (3) ◽  
pp. 110-115
Author(s):  
Johannes Hertzler ◽  
Steffen Rust

Soil water potential can be used as a proxy for plant available water in irrigation scheduling. This study investigated the relationship between soil water potential and plant water status of pines (Pinus sylvestris L.) planted into two different substrates. Predawn leaf water potential as a well-established measure of the plant water status and soil water potential correlated very well. However, estimating the plant water status from individual sensor readings is subject to significant estimation errors. Furthermore, it was shown that heterogeneous soil/root ball combinations can lead to critical effects on the soil water balance, and that sensors installed outside of the root balls cannot estimate the plant water status without site-specific calibration.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 323
Author(s):  
Ana Fernandes de Oliveira ◽  
Massimiliano Giuseppe Mameli ◽  
Mauro Lo Cascio ◽  
Costantino Sirca ◽  
Daniela Satta

We propose an index for proximal detection of water requirements to optimize the use of water resources in arid and semi-arid wine growing regions. To test the accuracy and representativeness of the proposed irrigation need index (IIN), plant water status and physiological performances were monitored during seasons 2019 and 2020 in two grapevine varieties with different anisohydric degree (Vermentino and Cannonau) grown in 3 sites in Sardinia (Italy). Daily leaf gas exchange curves and stem water potential were recorded. Canopy temperature was monitored, using both thermistor sensors (Tc) and infrared thermometry (IR). Meteorological data, including dry and wet bulb temperatures were collected to compute and parametrize IIN, based on energy balance equation. Vineyard water balance, thermal time and irrigation water productivity were characterized. Linear regression analysis allowed to validate IIN for both varieties and to establish target thresholds for mild, moderate and severe water deficit to optimize irrigation for high yield and quality objectives. IIN well represents plant water status, using either Tc or IR, and allows rapid and easy detection of water and heat stress condition, even when a stricter stomatal control determines slighter variation and lower response of stem water potential, as in plants with low anisohydric degree.


Author(s):  
Runze Yu ◽  
Daniele Zaccaria ◽  
Isaya Kisekka ◽  
S. Kaan Kurtural

AbstractProximal sensing is being integrated into vineyard management as it provides rapid assessments of spatial variability of soils’ and plants’ features. The electromagnetic induction (EMI) technology is used to measure soil apparent electrical conductivity (ECa) with proximal sensing and enables to appraise soil characteristics and their possible effects on plant physiological responses. This study was conducted in a micro irrigated Cabernet Sauvignon (Vitis vinifera L.) vineyard to investigate the technical feasibility of appraising plant water status and its spatial variability using soil ECa and must carbon isotope ratio analysis (δ13C). Soil temperature and soil water content were monitored in-situ using time domain reflectometry (TDR) sensors. Soil ECa was measured with EMI at two depths [0–1.5 m (deep ECa) and 0–0.75 m (shallow ECa)] over the course of the crop season to capture the temporal dynamics and changes. At the study site, the main physical and chemical soil characteristics, i.e. soil texture, gravel, pore water electrical conductivity (ECe), organic carbon, and soil water content at field capacity, were determined from samples collected auguring the soil at equidistant points that were identified using a regular grid. Midday stem water potential (Ψstem) and leaf gas exchange, including stomatal conductance (gs), net carbon assimilation (An), and intrinsic water use efficiency (WUEi) were measured periodically in the vineyard. The δ13C of produced musts was measured at harvest. The results indicated that soil water content (relative importance = 24%) and texture (silt: relative importance = 22.4% and clay: relative importance = 18.2%) were contributing the most towards soil ECa. Deep soil ECa was directly related to Ψstem (r2 = 0.7214) and gs (r2 = 0.5007). Likewise, δ13C of must was directly related to Ψstem (r2 = 0.9127), gs (r2 = 0.6985), and An (r2 = 0.5693). Results from this work provided relevant information on the possibility of using spatial soil ECa sensing and δ13C analysis to infer plant water status and leaf gas exchange in micro irrigated vineyards.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 510 ◽  
Author(s):  
Ana Belén Mira-García ◽  
Wenceslao Conejero ◽  
Juan Vera ◽  
María Carmen Ruiz-Sánchez

Physiological plant water status indicators are useful for managing precision irrigation in regions with limited water resources. The aim of this work was to evaluate the effect of shade netting on the diurnal and seasonal variations of several plant water status indicators in young lime trees (Citrus latifolia Tan., cv. Bearss), grown at the CEBAS-CSIC experimental station in Murcia, Spain. Stem water potential (Ψstem), leaf gas exchange (net photosynthesis (Pn) and stomatal conductance (gs)), and canopy temperature (Tc) were measured on representative days of winter and summer. The Ψstem daily pattern was quite similar in both seasons under both conditions. However, the circadian rhythm of leaf gas exchange was affected by shade conditions, especially in summer, when shaded leaves showed maximum gs values for a longer time, allowing higher net photosynthesis (37%). Canopy temperature behaved similarly in both conditions, nevertheless, lower values were recorded in open-air than in shaded trees in the two seasons. The canopy-to-air temperature difference (Tc − Ta), however, was lower in shaded trees during the daylight hours, indicating the higher degree of leaf cooling that was facilitated by high gs values. The possibility of continuously recording Tc makes it (or the proposed canopy thermal index, CTI) a promising index for precise irrigation scheduling. Shade netting was seen to favour gas exchange, suggesting that it may be considered alternative to open-air for use in semi-arid areas threatened by climate change.


2021 ◽  
Author(s):  
Sahap Kurtural ◽  
Runze Yu ◽  
Daniele Zaccaria

<p>Proximal sensing is being integrated into vineyard management as it provides rapid assessments of spatial variability of soils’ and plants’ features. The electromagnetic induction (EMI) technology is used to measure soil apparent electrical conductivity (EC<sub>a</sub>) with proximal sensing and enables to appraise soil characteristics and their possible effects on plant physiological responses. This study was conducted in a micro irrigated Cabernet Sauvignon (Vitis vinifera L.) vineyard to investigate the technical feasibility of appraising plant water status and its spatial variability using soil EC<sub>a</sub> and must carbon isotope ratio analysis (δ<sup>13</sup>C). Soil temperature and soil water content were monitored in-situ using time domain reflectometry (TDR) sensors. Soil EC<sub>a</sub> was measured with EMI at two depths [0 – 1.5 m (deep EC<sub>a</sub>) and 0 – 0.75 m (shallow EC<sub>a</sub>)] over the course of the crop season to capture the temporal dynamics and changes. At the study site, the main physical and chemical soil characteristics, i.e. soil texture, gravel, pore water electrical conductivity (EC<sub>e</sub>), organic carbon, and soil water content at field capacity, were determined from samples collected auguring the soil at equidistant points that were identified using a regular grid. Midday stem water potential (Ψ<sub>stem</sub>) and leaf gas exchange, including stomatal conductance (g<sub>s</sub>), net carbon assimilation (A<sub>n</sub>), and intrinsic water use efficiency (WUE<sub>i</sub>) were measured periodically in the vineyard. The δ<sup>13</sup>C of produced musts was measured at harvest. The results indicated that soil water content (relative importance = 24 %) and texture (silt: relative importance = 22.4 % and clay: relative importance = 18.2 %) were contributing the most towards soil EC<sub>a</sub>. Deep soil EC<sub>a </sub>was directly related to Ψ<sub>stem</sub> (r<sup>2</sup> = 0.7214) and g<sub>s </sub>(r<sup>2</sup> = 0.5007). Likewise, δ<sup>13</sup>C of must was directly related to Ψ<sub>stem </sub>(r<sup>2</sup> = 0.9127), g<sub>s </sub>(r<sup>2</sup> = 0.6985), and A<sub>n</sub> (r<sup>2</sup> = 0.5693). Results from this work provided relevant information on the possibility of using spatial soil EC<sub>a </sub>sensing and δ<sup>13</sup>C analysis to infer plant water status and leaf gas exchange in micro irrigated vineyards.</p>


2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Saraswati Prabawardani

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal" style="text-align: justify;"><span style="font-size: 10pt;">The measurement of plant water status such as leaf water potential (LWP) and leaf relative water content (RWC) is important part of understanding plant physiology and biomass production. Preliminary study was made to determine the optimum amount of leaf abrasion and equilibration time of sweet potato leaf inside the thermocouple psychrometer chambers. Based on the trial, the standard equilibration time curve of a Peltier thermocouple for sweet potato leaf was between 2 and 3 hours. To increase the water vapour conductance across the leaf epidermis the waxy leaf cuticle should be removed or broken by abrasion. The result showed that 4 times leaf rubbings was accepted as the most effective way to increase leaf vapour conductance of sweet potato in the psychrometer chambers. In calculating the leaf relative water content, unstressed water of sweet potato leaves require 4 hours imbibition, whereas water stressed of sweet potato leaves require 5 to 6 hours to reach the saturation time. Either leaf water potential or relative water content can be used as a parameter for plant water status in sweet potato.</span><span style="font-size: 10pt;"> </span></p>


2021 ◽  
Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

&lt;p&gt;Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m&lt;sup&gt;3&lt;/sup&gt; per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m&lt;sup&gt;3&lt;/sup&gt; per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale. &amp;#160;In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season &amp;#8211; corresponding to the real irrigation water availability &amp;#8211; except &amp;#160;during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day&lt;sup&gt;-1&lt;/sup&gt;. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the &amp;#961;940 and &amp;#961;1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 &amp;#8729; &amp;#961;940 + 7.8014 (R&lt;sup&gt;2&lt;/sup&gt; =0.61) and SWP (MPa) = -13.043 &amp;#8729; &amp;#961;1250 + 8.9757 (R&lt;sup&gt;2&lt;/sup&gt; =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document