scholarly journals Modelling the Main Hydrodynamic Patterns in Shallow Water Estuaries: The Minho Case Study

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1040 ◽  
Author(s):  
Isabel Iglesias ◽  
Paulo Avilez-Valente ◽  
Ana Bio ◽  
Luísa Bastos

Numerical models are key tools to characterize hydrodynamical patterns of coastal environments and anticipate the potential effects of hazardous and extreme events, anthropogenic intervention or climate change. In this work, the openTELEMAC-MASCARET modelling system was selected to represent the dynamics of the Minho estuary, a very shallow estuary located at the Northwestern Iberian Peninsula coast. Calibration and validation results confirm the accuracy of the numerical tool, with small root mean square errors, close to null bias and the close to unit correlation and skill coefficients obtained for water level and currents velocity at several estuarine locations. The obtained results depict a tide dominated estuary with a delay in the tide phase and a marked asymmetry in the tide curve that increases upriver. Additionally, an upstream diminution of M2 and an upstream augmentation of M4 was observed, classifying this estuary as flood-dominated. The represented current patterns show that variations in the intensities of the main driving forces alter the behaviour of the hydrodynamical patterns within the estuary, with a clear dependence on bathymetric and topographic characteristics. During flood events, larger estuarine regions become submerged due to the low margins and the wetland characteristics, highlighting the need for accurate numerical models that can be used as a decision-making support tool for effective and integrated estuarine management.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 482 ◽  
Author(s):  
Michael Nones

Numerical modelling is becoming a major tool for supporting environmental studies at different scales, thanks to the ability of up-to-date codes to reproduce the complex mechanisms of the natural environment in quite a reliable manner. In evaluating the habitat diversity of anthropized rivers, however, many issues are rising because of the intrinsic complexity of the physical processes involved and the limitations associated with numerical models. Using a reach of the Po River in Italy as a case study, the present works aims to provide a qualitative description of the changes of the Eco-Environmental Diversity index as a response to different constant flow discharges typically observed along this reach. The goals are achieved by means of two solvers of the freeware iRIC suite, applied in cascade to first simulate the 2D fluvial hydrodynamics and subsequently provide a qualitative estimate of the habitat conditions. Despite the several simplifications intrinsically present in the modelling cascade and the ones introduced for practical purposes, the results show that an extremely strong and long-lasting reduction of the flow discharge, like the one very recently observed, can ultimately threaten the overall biological status of the river. Because of the modelling uncertainties, these preliminary outcomes are only qualitative and show the need for more research, both in terms of data acquisition and numerical schematization, to adequately and quantitatively evaluate the effects of transient hydrology on the river ecosystems. Moreover, additional field surveys are necessary to calibrate and validate the used biological parameters, aiming to obtain sufficiently reliable estimates.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Mahdi Shadabfar ◽  
Cagri Gokdemir ◽  
Mingliang Zhou ◽  
Hadi Kordestani ◽  
Edmond V. Muho

This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the analytical methods, the assumptions and results are described and discussed in order to provide a useful reference to judge the applicability of each model. Considering the numerical models, all commonly-used algorithms along with the simulation details and the influential parameters are reported and discussed. Finally, considering the experimental models, the emphasis is given here on presenting the most practical and widely employed laboratory models. The empirical equations derived from the models and their applications are examined in detail. In the Discussion section, the most common methods are selected and used to estimate the damage size of 13 case study problems. The results are then utilized to compare the accuracy and applicability of each selected method. Furthermore, the probabilistic analysis of the explosion-induced failure is reviewed using several structural reliability models. The selection, classification, and discussion of the models presented in this paper can be used as a reference in real engineering projects.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


2019 ◽  
Vol 11 (21) ◽  
pp. 6041 ◽  
Author(s):  
Zhang ◽  
Li ◽  
Buyantuev ◽  
Bao ◽  
Zhang

Ecosystem services management should often expect to deal with non-linearities due to trade-offs and synergies between ecosystem services (ES). Therefore, it is important to analyze long-term trends in ES development and utilization to understand their responses to climate change and intensification of human activities. In this paper, the region of Uxin in Inner Mongolia, China, was chosen as a case study area to describe the spatial distribution and trends of 5 ES indicators. Changes in relationships between ES and driving forces of dynamics of ES relationships were analyzed for the period 1979–2016 using a stepwise regression. We found that: the magnitude and directions in ES relationships changed during this extended period; those changes are influenced by climate factors, land use change, technological progress, and population growth.


2013 ◽  
Vol 13 (15) ◽  
pp. 7813-7824 ◽  
Author(s):  
R. L. Gattinger ◽  
E. Kyrölä ◽  
C. D. Boone ◽  
W. F. J. Evans ◽  
K. A. Walker ◽  
...  

Abstract. Observations of the mesospheric semi-annual oscillation (MSAO) in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80–100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the "driver" species and ozone as the "response" species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 × 106 cm2 s−1 and the vertical advection is upwards at 0.8 cm s−1. For April the corresponding values are 4 × 105 cm2 s−1 and 0.1 cm s−1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982) three decades ago remains to be addressed.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrizia Serra ◽  
Gianfranco Fancello

Abstract Performance assessment is a fundamental tool to successfully monitor and manage logistics and transport systems. In the field of Short Sea Shipping (SSS), the performance of the various maritime initiatives should be analyzed to assess the best way to achieve efficiency and guide related policies. This study proposes a quantitative methodology which can serve as a decision-support tool in the preliminary assessment and comparison of alternative SSS networks. The research is executed via a Mediterranean case study that compares a hypothetical Mediterranean ro-ro SSS network developed in the framework of a past Euro-Mediterranean cooperation project with the network of existing ro-ro liner services operating in the area. Performance benchmarking of the two networks is performed using a set of quantitative Key Performance Indicators (KPIs) and applying a factor-cluster analysis to produce homogeneous clusters of services based on the relevant variables while accounting for sample heterogeneity. Quantitative results mostly confirm the overall better performance of the prospective network and demonstrate that using KPIs and factor-cluster analysis to investigate the performance of maritime networks can provide policymakers with a preliminary wealth of knowledge that can help in setting targeted policy for SSS-oriented initiatives.


Sign in / Sign up

Export Citation Format

Share Document