scholarly journals Understanding Groundwater Mineralization Changes of a Belgian Chalky Aquifer in the Presence of 1,1,1-Trichloroethane Degradation Reactions

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2009
Author(s):  
Youcef Boudjana ◽  
Serge Brouyère ◽  
Pierre Jamin ◽  
Philippe Orban ◽  
Davide Gasparella ◽  
...  

An abandoned industrial site in Belgium, located in the catchment of a chalk aquifer mainly used for drinking water, has been investigated for groundwater pollution due to a mixture of chlorinated solvents with mainly 1,1,1-trichloroethane (1,1,1-TCA) at high concentrations. The observed elevated groundwater mineralization was partly explained by chemical reactions associated with hydrolysis and dehydrohalogenation (HY/DH) of 1,1,1-TCA in the chalky aquifer. Leaching of soluble compounds from a backfilled layer located in the site could also have influenced the groundwater composition. In this context, the objective of this study was to investigate the hydrochemical processes controlling groundwater mineralization through a characterization of the backfill and groundwater chemical composition. This is essential in the context of required site remediation to define appropriate remediation measures to soil and groundwater. Groundwater samples were collected for chemical analyses of chlorinated aliphatic hydrocarbons, major ions, and several minor ones. X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy (SEM) and a leaching test according to CEN/TS 14405 norm were carried out on the backfill soil. δ34S and δ18O of sulphate in groundwater and in the backfill eluates were also compared. Both effects influencing the groundwater hydrochemistry around the site were clarified. First, calcite dissolution under the 1,1,1-TCA degradation reactions results in a water mineralization increase. It was assessed by geochemical batch simulations based on observed data. Second, sulphate and calcium released from the backfill have reached the groundwater. The leaching test provided an estimation of the minimal released quantities.

2018 ◽  
Vol 39 (1) ◽  
pp. 109-117
Author(s):  
Ikram Mokeddem ◽  
Meriem Belhachemi ◽  
Touhami Merzougui ◽  
Noria Nabbou ◽  
Salih Lachache

AbstractGroundwater samples from Turonian aquifer of Béchar region were evaluated as drinking and irrigation water sources. physicochemical parameters including pH, EC, TH, Na+, Ca2+, Mg2+, Cl−, SO42– and NO3− were determined for 16 water sampling points. These characterizations show that the groundwater is fresh to brackish, slightly alkaline and the major ions are Na+, Ca2+, Mg2+, Cl− and SO42–. According to WHO standards, 50% of the analysed water are suitable as a drinking source while the other samples are not in compliance with drinking water standards. This non-compliance is basically due to the high concentrations of Na+, Cl−, and SO42– requesting further treatment to reach the stringent standards. According to the results of nitrate concentrations, anthropogenic source seems to influence the groundwater quality. The present study shows that Béchar groundwater may represent an important drinking and irrigation water source. However, a specific management strategy should be adapted in order to avoid the contamination by anthropogenic sources.


2019 ◽  
Vol 19 (1) ◽  
pp. 19
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Satrio Satrio ◽  
Rasi Prasetio

Bantar Gebang landfill located in Bekasi regency is a biggest sanitary landfill in Indonesia which comes up some refusals from local people because of its bad impact on their environment. Major ion contents in leachate and fresh groundwater were investigated during the rainy and dry season to determine contamination by leachate released from Bantar Gebang and Sumur Batu landfill. Leachate contained high concentrations of all major ions that was mainly characterized as a NaKHCO3 water type. On the other hand, most fresh groundwater samples were predominated by CaMgHCO3 and CaMgCl water type. Concentrations of K+, Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- and NO3- in leachate were to be in a maximum factor of 2110; 7; 6; 143; 20; 112; 349 and 20, respectively than its contents in groundwater. Leachate from Bantar Gebang was detected have a higher concentration than those contained in Sumur Batu that was probably due to its mature leachate. An estimated mixture of leachate to fresh water in monitoring wells (5 m and 15 m depth) was in the range of 20 to 34%, related to Na+ and Cl- signatures, while the shallow groundwater located in residents in the vicinity of these landfills exhibited maximum leachate about 2%.


2022 ◽  
Vol 9 ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed El Kashouty ◽  
Waleed Gusti ◽  
Amit Kumar ◽  
Ali Mohammad Subyani ◽  
...  

Seawater has intruded into many of Saudi Arabia’s Red Sea coastal aquifers, with varying degrees of extension depending on location, hydrogeology, and population density. This study aimed to evaluate and comprehend the processes that influence the hydrogeochemical characteristics of the coastal aquifer in Saudi Arabia’s Khulais region. Groundwater samples were taken from nineteen locations during the winter and summer of 2021, and data from major ions and trace elements were examined and interpreted using ArcGIS software. The total dissolved solids (TDS) concentrations ranged between 480 and 15,236 mg/L and 887–18,620 mg/L in winter and summer, respectively. Groundwater TDS concentration was observed to be influenced by groundwater flow, lithogenic, anthropogenic, and seawater intrusion in this study (2021) when compared to 2016. The concentration of nitrate (NO3−) and strontium (Sr) in most samples exceeds the drinking guidelines. The occurrence of high concentrations of bromide (Br), Fluoride (F), Iron (Fe) (winter and summer) and Aluminum (Al), Boron (B), Chromium (Cr), Nickel (Ni), lead (Pb), cadmium (Cd), cobalt (Co), copper (Cu) and manganese (Mn) (winter) was also exhibited and observed up to more than drinking and irrigation limits. The central part of the study area was affected by seawater intrusion. The hydraulic conductivity of the topsoil was measured, and it ranged from 0.24 to 29.3 m/day. Based on electrical conductivity (EC) and sodium absorption ratio, most aquifer samples were unsuitable for irrigation (SAR).


2013 ◽  
Vol 13 (2) ◽  
pp. 486-498 ◽  
Author(s):  
P. S. Akhil ◽  
K. N. Sumangala ◽  
C. H. Sujatha

Groundwater quality assessment for drinking and irrigation purposes in the specific hot spot areas of Kasargod District, Kerala, India, was conducted during July 2009 to January 2011. Groundwater samples were examined and quantified for the major cations and anions, microbiological parameters, irrigation quality parameters such as sodium adsorption ratio (SAR), residual Mg/Ca ratio and %Na. Most of the ground samples were acidic in nature and the fluoride concentrations exhibited below the desirable limit. Concentration of iron exceeds the desirable limit of 0.3 mg/l during monsoon 2009 and pre-monsoon 2010. The competitive and non-competitive ion relationship between the major ions was authenticated by the correlation study.


2014 ◽  
Vol 9 (1) ◽  
pp. 95-103 ◽  
Author(s):  
He Rong Gui

Major ions, trace elements and isotope concentrations for eight groundwater samples were tested, which collected from sandstone aquifer in Qianyingzi mine, northern Anhui province, China. The Geochemical characteristic of groundwater samples were studied based on the conventional graphical and multivariate statistical approach, and the resulted showed: two types of groundwater could be identified through the Piper diagram, which have high concentrations total dissolved solids (1,164–5,165 mg/L), with alkaline environment (pH = 8.02–8.90) in nature; the rare earth element of groundwater samples are characterized by enrichment of HREEs compared to LREEs when normalized to PAAS, which presented from the NdSN/YbSN ratios ranging from 0.042 to 0.121, with an average 0.075; groundwater characterized by negative Ce anomalies and positive Eu anomalies, what could be caused by the Ph conditions and exchange reaction between Eu2+ and Sr2+, respectively; δ18O and δ2H of groundwater varied from −8.78 to −8.36‰ and −68.5 to −59.5‰, respectively. The detritus and the exchange reaction between groundwater and alkyl could be the reason of obviously drift of δ2H.


2021 ◽  
Author(s):  
Javed Iqbal ◽  
Chunli Su

Abstract Groundwater is a vital resource for human life and economic growth. In the Khanewal district of Punjab, Pakistan, environmental changes, and anthropogenic activities have made groundwater extremely vulnerable in the past forty years. Sixty-eight groundwater samples were collected from the study area, major ions and trace elements were analyzed. The Principal Component Analysis and Cluster Analysis were used to identify the major factors influencing groundwater quality, as well as to assess its suitability for drinking and irrigation in southern Punjab. The aquifers are slightly acidic to alkaline, according to the pH (6.9–9.2) of groundwater. Significant cations are distributed as follows: Na+ > Ca2+ > Mg2+ > K+, while anions are distributed as HCO3− > SO42− > Cl−. The main hydrochemical facies are mixed Na·Ca-HCO3 and Na·Ca (Mg)-HCO3·SO4. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, governed groundwater hydrochemistry. The water quality index (WQI) indicates that 17.64% of the water samples are unsuitable to drink. However, according to the Wilcox diagram, the USSL diagram, and some other agricultural indices, approximately 68% of the groundwater samples are suitable for irrigation.


1998 ◽  
Vol 37 (6-7) ◽  
pp. 87-93 ◽  
Author(s):  
M. Kussmaul ◽  
A. Groengroeft ◽  
H. Koethe

In the year 1993 a confined and unused harbour basin was used to store 290,000 m3 of fine-grained dredged material from Hamburg harbour. About 70% of the deposit surface was water covered. The edge areas were above the water table and covered with reed. Emissions of dissolved compounds into the groundwater, as well as surface gas emissions were measured from 1994 to 1996. As indicators for water fluxes from the deposit we used NH4+ and HCO3− because of their high concentrations in mud porewater in comparison to groundwater. The average concentrations of NH4+ and HCO3− in the porewater increased during 2 years from 85 to 250 mg NH4+ 1−1 and from 2.0 to 3.1 g HCO3− 1−1, while the groundwater samples showed constant values of 8 mg NH4+ 1−1 and 0.7 g HCO3− 1−1. Furthermore, the average gas emissions over the water surface were 3.2 g CH4 m−2 d−1 and 0.8 g CO2 m−2 d−1. In contrast, no methane and 3.0 g CO2 m−2 d−1 were emitted from land areas. The results indicated, that there were no significant emissions of mud porewater compounds into the groundwater but high CH4-emissions over the water covered surface of the mud deposit.


2015 ◽  
Vol 17 (1) ◽  
pp. 162-174 ◽  

<div> <p>This paper presents an assessment of the impact of uncontrolled and unscientific disposal of MSW on ground water in Dhanbad city, India. In this study, ground water quality around municipal solid waste disposal sites was investigated. Ground water quality analysis was carried out on samples collected at various distances from two disposal sites. The study has revealed that the ground water quality near dumping sites does not conform to the drinking water quality standards as per IS:10500. The impacts of indiscriminate dumping activity on ground water appeared most clearly as high concentrations of total dissolved solids, electrical conductivity, chlorides, chemical oxygen demand, and sulphates. High amount of metals like Na, K, Ca, Mg, Cd, Cu, Ni, Fe, Zn and Mn has also been detected in the groundwater samples near dumping area. Leachate characterization study also reveals high potential for groundwater contamination. Presence of feacal coliform contamination in groundwater samples indicates potential health risk for individuals exposed to this water.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
Author(s):  
juyeon Lee ◽  
minjune Yang

&lt;p&gt;This study conducted a rhizofiltration experiment for uranium-removal with the edible plants (&lt;em&gt;Lactuca sativa, Brassica campestris &lt;/em&gt;L., &lt;em&gt;Raphanus sativus &lt;/em&gt;L., and &lt;em&gt;Oenanthe javanica&lt;/em&gt;) which generally consumed in South Korea. Various batch experiments were performed with different initial uranium concentrations, pH conditions, and genuine groundwater. The results showed the uranium accumulation and bioconcentration factor (BCF) of plant roots increase with an increase in initial uranium concentrations in the solution. Of the four plants, the amount of uranium accumulated in &lt;em&gt;Raphanus sativus &lt;/em&gt;L. roots was 1215.8 &amp;#956;g/g DW with the maximum BCF value of 2692.7. The BCF value based on various pH conditions (pHs 3, 5, 7 and 9) of artificial solutions was highest at pH 3 for all four plants, and the BCF value of &lt;em&gt;Brassica campestris &lt;/em&gt;L. was the maximum of 11580.3 at pH 3. As a result of rhizofiltration experiments with genuine groundwater contaminated with uranium, the BCF values of &lt;em&gt;Raphanus sativus &lt;/em&gt;L. were 1684.7 and 1700.1, the highest among the four species, in Oesam-dong and Bugokdong groundwater samples with uranium concentration of 83 and 173 &amp;#956;g/L. From SEM/EDS analysis, it was confirmed that uranium in contaminated groundwater was adsorbed as a solid phase on the root surface. These results demonstrate that &lt;em&gt;Raphanus sativus &lt;/em&gt;L. not only has a high tolerance to high concentrations of uranium and low pH conditions but also has a remarkable potential for uranium accumulation capacity.&lt;/p&gt;


2021 ◽  
Author(s):  
Abul Qasim ◽  
Satinder Pal Singh

&lt;p&gt;Major ions, Sr concentration, and &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr have been analyzed in groundwater of the coastal Gujarat Alluvial Plain, collected during monsoon, post-monsoon, and pre-monsoon seasons of 2016&amp;#8211;2017. The major objective of this study was to understand the regional groundwater salinization mechanism. In the study area, the groundwater is mostly characterized by Na-Cl facies, with few samples of Ca-Cl, Ca-Mg-Cl, Na-Ca-HCO&lt;sub&gt;3&lt;/sub&gt;, and Ca-Mg-HCO&lt;sub&gt;3&lt;/sub&gt; types. Whereas, the Narmada and the Tapi river water samples are particularly of Ca-Mg-HCO&lt;sub&gt;3&lt;/sub&gt; type. The hydrogeochemical facies evolution (HFE) diagram depicts the coastal groundwater freshening irrespective of the season ruling out the lateral seawater intrusion far inland. However, the &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr and Br/Cl ratios strongly suggest the modern marine influence on the regional groundwater. In the plot of 1/Sr versus &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr, most of the groundwater samples fall on the binary mixing line between the seepage groundwater and modern seawater endmembers. Therefore, we suspect that the up-coning of recently trapped seawater by groundwater over-extraction is the most plausible reason for the groundwater salinization, which indicate the vulnerability of the coastal Gujarat alluvial plain to the near future sea ingress under the global warming scenario. A few exceptional groundwater samples far north of the Narmada River show more radiogenic &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr indicative of silicate weathering.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document