scholarly journals An Innovative Approach to Determine Coastal Scenic Beauty and Sensitivity in a Scenario of Increasing Human Pressure and Natural Impacts due to Climate Change

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
Alexis Mooser ◽  
Giorgio Anfuso ◽  
Allan T. Williams ◽  
Rosa Molina ◽  
Pietro P. C. Aucelli

Coasts worldwide face a great variety of environmental impacts, as well as increased anthropogenic pressures due to urbanization and rapid population growth. Human activities menace ecosystem services and the economy of coastal countries, often based on “Sun, Sea and Sand” (3S) tourism. The five parameters of greatest importance (the “Big Five”) for beach visitors are safety, facilities, water quality, no litter and scenery, and the characterization of the latter was recently carried out by means of a checklist of 26 natural and human parameters, parameter weighting matrices and fuzzy logic, according to the “Coastal Scenic Evaluation System” (CSES) methodology. In order to propose sound coastal management strategies, the main aim of this paper is to propose a method to determine the scenic sensitivity of (i) natural parameters to coastal natural processes in a Climate Change context and (ii) human parameters to visitors’ pressure in a scenario of increasing tourism and coastal developments. Regarding natural parameters, the sensitivity of “Beach face” and “Dunes” parameters is determined according to an Erodibility Index with a Correction Factor, taking into account wave forcing characteristics, tidal range and trends at a local scale of Sea Level Rise and Storm Surge. This establishes a Sensitivity Index to natural processes. A site’s scenic sensitivity to human pressure/activities was determined by considering the sensitivity of several human parameters of the CSES method according to beach typology and access difficulty together with the Protection Area Management Category to which a site belongs. A Human Impact Index is obtained, which is afterwards corrected by taking into account local trends of tourism pressure, establishing a Sensitivity Index to human pressure. Finally, a total Sensitivity Index considering both natural processes and human pressure is obtained, and sites divided into three sensitive groups. The results can be useful to limit and prevent environmental degradation linked to natural processes and tourism development, and also to suggest measures to improve the scenic value of investigated sites and their sustainable usage. The method was tested for 29 sites of great scenic quality along the Mediterranean coast of Andalusia, Spain.

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Alexis Mooser ◽  
Giorgio Anfuso ◽  
Hristo Stanchev ◽  
Margarita Stancheva ◽  
Allan T. Williams ◽  
...  

Beach management is a complex process that demands a multidisciplinary approach, as beaches display a large variety of functions, e.g., protection, recreation and associated biodiversity conservation. Frequently, conflicts of interest arise, since management approaches are usually focused on recreation, preferring short-term benefits over sustainable development strategies; meanwhile, coastal areas have to adapt and face a changing environment under the effects of long-term climate change. Based on a “Sea, Sun and Sand (3S)” market, coastal tourism has become a major economic sector that depends completely on the coastal ecosystem quality, whilst strongly contributing to its deterioration by putting at risk its sustainability. Among beach users’ preferences, five parameters stand out: safety, facilities, water quality, litter and scenery (the “Big Five”), and the latter is the focus of this paper. Bulgaria has impressive scenic diversity and uniqueness, presenting real challenges and opportunities as an emerging tourist destination in terms of sustainable development. However, most developing countries tend to ignore mistakes made previously by developed ones. In this paper, scenic beauty at 16 coastal sites was field-tested by using a well-known methodology, i.e., the Coastal Scenic Evaluation System (CSES), which enables the calculation of an Evaluation Index “D” based on 26 physical and human parameters, utilizing fuzzy logic matrices. An assessment was made of these high-quality sites located in Burgas (8), Varna (3) and Dobrich (4) provinces. Their sensitivity to natural processes (in a climate change context) and human pressure (considering tourist trends and population increases at the municipality scale) were quantified via the Coastal Scenic Sensitivity Indexes (CSSIs) method. The CSES and CSSI methods allowed us to conduct site classification within different scenic categories, reflecting their attractiveness (Classes I–V; CSES) and level of sensitivity (Groups I–III; CSSI). Their relationship made it possible to identify management priorities: the main scenic impacts and sensitivity issues were analyzed in detail and characterized, and judicious measures were proposed for the scenic preservation and enhancement of the investigated sites. Seven sites were classified as extremely attractive (Class I; CSES), but with slight management efforts; several Class II sites could be upgraded as top scenic sites, e.g., by cleaning and monitoring beach litter. This paper also reveals that investigated sectors were more sensitive to environmental impacts than human pressure; for example, eight were categorized as being very sensitive to natural processes (Group III; CSSI).


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 456
Author(s):  
Alexis Mooser ◽  
Giorgio Anfuso ◽  
Lluís Gómez-Pujol ◽  
Angela Rizzo ◽  
Allan T. Williams ◽  
...  

Coastal areas globally are facing a significant range of environmental stresses, enhanced by climate change-related processes and a continuous increase of human activities. The economic benefits of tourism are well-known for coastal regions, but, very often, conflicts arise between short-term benefits and long-term conservation goals. Among beach user preferences, five parameters of greater importance stand out from the rest, i.e., safety, facilities, water quality, litter and scenery; the latter is the main concern of this study. A coastal scenic evaluation was carried out in the Balearic Islands and focused on two major issues: coastal scenic beauty together with sensitivity to natural processes and human pressure. The archipelago is renowned as a top international coastal tourist destination that receives more than 13.5 million visitors (2019). Impressive landscape diversity makes the Balearics Islands an ideal field for this research. In total, 52 sites, respectively located in Ibiza (11), Formentera (5), Mallorca (18) and Menorca (18), were field-tested. In a first step, coastal scenic beauty was quantified using the coastal scenic evaluation system (CSES) method, based on the evaluation of 26 physical and human parameters, and using weighting matrices parameters and fuzzy logic mathematics. An evaluation index (“D”) was obtained for each site, allowing one to classify them in one of the five scenic classes established by the method. Twenty-nine sites were included in class I, corresponding to extremely attractive sites (CSES), which were mainly observed in Menorca. Several sound measures were proposed to maintain and/or enhance sites’ scenic value. In a second step, scenic sensitivity was evaluated using a novel methodological approach that makes possible the assessment of three different coastal scenic sensitivity indexes (CSSI), i.e., the natural sensitivity index NSI, the human sensitivity index HSI and the total sensitivity index TSI. Future climate change trends and projection of tourism development, studied at municipality scale, were considered as correction factors. All the islands showed places highly sensitive to environmental processes, while sensitivity to human pressure was essentially observed at Ibiza and Mallorca. Thereafter, sites were categorized into one of three sensitive groups established by the methodology. Results obtained are useful in pointing out very sensitive sceneries as well as limiting, preventing and/or anticipating future scenic degradation linked to natural and human issues.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Ramani Bai Varadharajan ◽  
Tkalich Pavel ◽  
Mohan S

The main aim of the project is to develop a new Database Information and Management System (DIMS) which is available and accessible online. Success of any modeling is embedded in using the perfect and adequate length of data. This is vital for studying or developing a scientific model for natural processes such as climate change and geo-hazards. Thus a geo-referenced meteorological, coastal and hydrological database for decision-making and policy formulation according to climate change impact has been developed. The objective of this study is to provide the DIMS that will allow sharing of climate change parameters that has impacted on the coast of selected countries. The methodology has online hosting of database combined with rapid data retrieval for both analytical and modeling functions. The outcome of the Web-GIS based DIMS would serve as a decision-support tool and aids for development of an integrated and sustainable management strategies for climate change and geo-hazards. The project has currently a database relevant to selected stations along the coasts of Malaysia, Singapore and India available on the project webpage www.globalclimate-engine.org. The project could be extended to cover the entire database pertaining to the in-land areas of these regions


1998 ◽  
Vol 37 (6-7) ◽  
pp. 331-336 ◽  
Author(s):  
Stephen Garbaciak ◽  
Philip Spadaro ◽  
Todd Thornburg ◽  
Richard Fox

Sequential risk mitigation approaches the remediation of contaminated sediments in three phases designed to: (1) immediately reduce the ecological and human health risks associated with high levels of contamination, using methods such as the confinement or capping of high-risk materials; (2) reduce the risks associated with moderate levels of pollution to a minimum, on a less urgent schedule and at a lower cost; and (3) address areas of limited contamination through a combination of natural recovery and enhanced natural recovery (to aid or speed those natural processes). Natural recovery, the reduction of contaminant concentrations through natural processes, is based on the practical observation that overall ecosystem recovery appears to be largely a function of time. Sediment decomposition and the mixing of new and old sediments by bottom-dwelling organisms can both contribute to reduced contaminant concentrations. Knowledge of these processes--sediment decomposition, sediment mixing by bottom-dwelling organisms, and chemical residence time is critical in the development of appropriate ecosystem recovery and waste management strategies. Evaluations to support natural recovery predictions are designed to collect and evaluate information necessary to determine whether surface sediment chemical concentrations, with adequate source control, will reach the cleanup standards within a ten-year period.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Author(s):  
Valeria Chávez ◽  
Debora Lithgow ◽  
Miguel Losada ◽  
Rodolfo Silva-Casarin

AbstractInfrastructure is necessary to protect and provide the goods and services required by humans. As coastal green infrastructure (CGI) aims to respect and work with natural processes, it is a feasible response to mitigate or avoid the consequences of coastal squeeze. The concept of CGI is receiving increased attention of late due to the challenges facing us, such as climate change, population growth and the overexploitation of natural resources on the coast. Terms which may be applied to encourage the construction of infrastructure, or to minimize the responsibility for poorly made decisions, often induce misunderstanding. In this paper, the concept of CGI and its use in solving coastal problems is reordered. Four categories are proposed, according to the degree of naturalness of the project: Nature reclamation, Engineered ecosystems, Ecologically enhanced engineering, and De-engineering/Relocation. Existing coastal risk evaluation frameworks can be used to design many types of CGI. Key concepts, challenges and good practices for the holistic management of coastal squeeze are presented from the analysis of successful and unsuccessful CGI projects worldwide.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


Sign in / Sign up

Export Citation Format

Share Document