scholarly journals A Comparative Study of Scenedesmus dimorphus Cultured with Synthetic and Actual Wastewater

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3060
Author(s):  
Liang Li ◽  
Kun Chi

This study compared the growth of the microalgae Scenedesmus dimorphus in synthetic wastewater and actual wastewater under different cultivation conditions, in terms of nitrogen and phosphorus availability, wastewater quality, light condition and CO2 addition. The results show that the form of nitrogen source had a significant effect on the growth of microalgae. Urea as a nitrogen source increased the growth rate of S. dimorphus significantly, while the high concentration of inorganic nitrogen inhibited the growth. When phosphate was 4 mg/L and pH was 7, the growth of S. dimorphus was the greatest. The bacteria in actual wastewater not only promote the growth of microalgae but also facilitate the formation of flocs, which is conducive to biomass harvest. With the increase in light intensity and light duration, S. dimorphus showed primarily an increasing and then a decreasing trend. Higher light intensity was required in actual wastewater than in synthetic wastewater, which may be due to the barrier effect of wastewater turbidity. S. dimorphus grew well in both kinds of wastewater with the addition of 2% CO2.

2022 ◽  
Vol 12 (3) ◽  
pp. 19-27
Author(s):  
Sumaiya Nusrat Chaitee ◽  
Rudra Protap Biswas ◽  
Md Imran Kabir

The organic content from urban wastewater is treated with various conventional processes efficiently. However, for biological treatment of secondary effluent containing excessive inorganic nitrogen and phosphorus, microalgae can be used. In this study, algal strains have been collected from locally available natural blooms and cultured in a BG-11 medium. Spirulina sp., the blue-green algae, dominant over the other species within the natural bloom, is applied in ten different dosages (0.2-2.5 g/L) to the synthetic wastewater with a 3-day hydraulic retention time. The removal efficiency of nitrate, ammonia, and phosphate have been observed to be about 60%, 30%, and 54% respectively. The highest removal efficiency has been found at 2.5 g/L of microalgae dose. Linear forms of Langmuir and Freundlich isotherms have been used for biosorption modeling, and both isotherms fit well with R2>60% and NRMSE<11% in all cases. Additionally, the separation factor and the adsorption intensity represent the favorability of the biosorption process. Journal of Engineering Science 12(3), 2021, 19-27


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Meng Zhang ◽  
Tao Lu ◽  
Hans W. Paerl ◽  
Yiling Chen ◽  
Zhenyan Zhang ◽  
...  

ABSTRACT The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems. IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


1986 ◽  
Vol 43 (8) ◽  
pp. 1504-1514 ◽  
Author(s):  
F. Joan Hardy ◽  
Ken S. Shortreed ◽  
John G. Stockner

Inorganic nitrogen and phosphorus were applied weekly during the growing season from 1980 to 1982 and twice weekly in 1983 to Hobiton Lake, a warm monomictic coastal lake in British Columbia. The lake was not fertilized in 1984. Average numbers of bacteria during the growing season decreased from a high of 1.53 × 106∙mL−1 in the fertilized condition to 0.84 × 106∙mL−1 in the unfertilized condition. Chlorophyll a concentrations decreased from a maximum seasonal average of 2.69 μg∙L−1 (1981) to 1.30 μg∙L−1 (1984), and algal numbers decreased from 5.83 × 104∙mL−1 (1983) to 2.29 × 104∙mL−1 (1984). Although the numbers of phytoplankton in each size fraction (picoplankton, nanoplankton, or microplankton) decreased in the unfertilized condition, the greatest change was an almost fourfold decrease in picoplankton, which consisted of 90% cyanobacteria (primarily Synechococcus spp.). Abundance of the large diatoms Rhizosolenia spp. and Melosira spp. increased in 1984, resulting in an increase in average seasonal algal volume. Average densities of medium (0.15–0.84 mm) and large (0.85–1.5 mm) zooplankton were greatest in 1982, while rotifers and small zooplankton (0.10–0.14 mm) were most dense in 1984 following nutrient reduction. The lake had relatively high concentrations of planktivorous juvenile sockeye salmon (Oncorhynchus nerka) that appeared to minimize any direct effect of nutrient additions on zooplankton densities.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1047-1055 ◽  
Author(s):  
N. F. Y. Tam ◽  
Y. S. Wong ◽  
G. Leung

Laboratory-scale studies were undertaken to examine the effects of easily-biodegradable organic substances upon the nutrient removal by a simulated sequencing batch reactor (SBR). The fill and react period of the SBR was 14 hours, including an instant fill, 7 hours aeration, 4 hours anoxic and 3 hours aeration period. Three kinds of commonly used carbon sources, namely methanol, glucose and sodium acetate, at the concentrations equivalent to theoretical COD values of 50, 100 and 150 mg O2 l-1 were added to each reactor prior to the anoxic stage. The results showed that the concentration of NH4+-N dropped from its initial 50 to 18 mg l-1 (64 % removal) during the first aeration period, with the NO3−-N content increased from 2 to 33 mg l−1. A 60% depletion of COD was also recorded in this period. Denitrification occurred during the anoxic period, higher amount of NO3−1-N was removed in the reactors supplemented with carbon substrates at the concentrations of 100 and 150 mg l-1. The final inorganic nitrogen content was less than 5 mg l-1 in the reactor supplemented with 150 mg l-1 sodium acetate. Simultaneous removal of phosphorus was reported in reactors supplied with high concentration of sodium acetate. In these reactors, large amount of P was released during the anoxic/anaerobic period but the released P was taken up by bacterial cells in the subsequent aeration stage, and the final P content was less than 1.5 mg l-1 (84 % removal was achieved). Among the three carbon sources used, sodium acetate was the most efficient and effective source in removing wastewater nutrients, followed by methanol, and glucose was the least reliable substrate.


2017 ◽  
Vol 14 (16) ◽  
pp. 3831-3849 ◽  
Author(s):  
Katharine J. Crawfurd ◽  
Santiago Alvarez-Fernandez ◽  
Kristina D. A. Mojica ◽  
Ulf Riebesell ◽  
Corina P. D. Brussaard

Abstract. Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( <  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.


1965 ◽  
Vol 45 (3) ◽  
pp. 229-237 ◽  
Author(s):  
M. R. Kilcher ◽  
S. Smoliak ◽  
W. A. Hubbard ◽  
A. Johnston ◽  
A. T. H. Gross ◽  
...  

N, P, and N + P at 60, 26, and 60 + 26 lb per acre were applied on native grass sites during three successive years at seven, locations in Western Canada. Single applications of the N fertilizer resulted in 3- or 4-year total yield increases of 300 to 600 lb per acre at six locations. At Summerland the 3-year increase was nearly 1400 lb. Phosphorus fertilizer by itself provided very little yield increase. N + P gave yield increases that were only slightly better than those from N alone.Residual responses to fertilizer were important, especially in the 12- to 16-in. rainfall locations. Only about one-third of the total yield increase occurred in the first year, with the remainder coming in the subsequent seasons.Weeds, where present, showed a marked response to fertilizer N in the first season; in subsequent years the response largely disappeared.


Sign in / Sign up

Export Citation Format

Share Document