scholarly journals Microbial Community Structure and Its Driving Environmental Factors in Black Carp (Mylopharyngodon piceus) Aquaculture Pond

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3089
Author(s):  
Xuemei Li ◽  
Lu Liu ◽  
Yongjiu Zhu ◽  
Tingbing Zhu ◽  
Xingbing Wu ◽  
...  

This study focused on monitoring the dynamics of bacterial communities and assessment of the influences of physicochemical parameters during a culture cycle in black carp polyculture ponds. Our results showed high variation in microbial diversity and microbial composition in the water column during the culture period. Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant phyla, while the abundances of the phyla Cyanobacteria, Firmicutes, and Bacteroidetes changed in different months. Moreover, 13 abundant genera with significant difference were found between different months. Thus, samples in different months were divided into three groups according to principal coordinate analysis (PCoA) and unweighted pair-group method (UPGMA) clustering results. RDA showed that total nitrogen (TN), total phosphorus (TP), phosphate (PO43−-P), nitrate (NO3−-N), temperature (T), dissolved oxygen (DO), and pH significantly shaped the microbial community composition in different months. While Pearson correlation coefficient showed that T, SD, and pH were strongly correlated to the dominant genera. Considering some genera are potential pathogenic bacteria, we could manage the black carp pond by quickly monitoring the water temperature and SD in the future.

2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Jie Gao ◽  
Miao Liu ◽  
Sixue Shi ◽  
Ying Liu ◽  
Yu Duan ◽  
...  

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China—the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.


2022 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Yeong-Nan Cheng ◽  
Wei-Chih Huang ◽  
Chen-Yu Wang ◽  
Pin-Kuei Fu

Lower respiratory tract sampling from endotracheal aspirate (EA) and bronchoalveolar lavage (BAL) are both common methods to identify pathogens in severe pneumonia. However, the difference between these two methods in microbiota profiles remains unclear. We compared the microbiota profiles of pairwise EA and BAL samples in ICU patients with respiratory failure due to severe pneumonia. We prospectively enrolled 50 ICU patients with new onset of pneumonia requiring mechanical ventilation. EA and BAL were performed on the first ICU day, and samples were analyzed for microbial community composition via 16S rRNA metagenomic sequencing. Pathogens were identified in culture medium from BAL samples in 21 (42%) out of 50 patients. No difference was observed in the antibiotic prescription pattern, ICU mortality, or hospital mortality between BAL-positive and BAL-negative patients. The microbiota profiles in the EA and BAL samples are similar with respect to diversity, microbial composition, and microbial community correlations. The antibiotic treatment regimen was rarely changed based on the BAL findings. The samples from BAL did not provide more information than EA in the microbiota profiles. We suggest that EA is more useful than BAL for microbiome identification in mechanically ventilated patients.


2020 ◽  
Vol 11 (3) ◽  
pp. 227-233
Author(s):  
C. Ozkul ◽  
M. Yalinay ◽  
T. Karakan

It has been largely accepted that dietary changes have an effect on gut microbial composition. In this pilot study we hypothesised that Ramadan fasting, which can be considered as a type of time-restricted feeding may lead to changes in gut microbial composition and diversity. A total of 9 adult subjects were included in the study. Stool samples were collected before (baseline) and at the end of the Ramadan fasting (after 29 days). Following the construction of an 16S rRNA amplicon library, the V4 region was sequenced using the Illumina Miseq platform. Microbial community analysis was performed using the QIIME program. A total of 27,521 operational taxonomic units (OTUs) with a 97% similarity were determined in all of the samples. Microbial richness was significantly increased after Ramadan according to observed OTU results (P=0.016). No significant difference was found in terms of Shannon index or phylogenetic diversity metrics of alpha diversity. Microbial community structure was significantly different between baseline and after Ramadan samples according to unweighted UniFrac analysis (P=0.025). LEfSe analysis revealed that Butyricicoccus, Bacteroides, Faecalibacterium, Roseburia, Allobaculum, Eubacterium, Dialister and Erysipelotrichi were significantly enriched genera after the end of Ramadan fasting. According to random forest analysis, the bacterial species most affected by the Ramadan fasting was Butyricicoccus pullicaecorum. Despite this is a pilot study with a limited sample size; our results clearly revealed that Ramadan fasting, which represents an intermittent fasting regime, leads to compositional changes in the gut microbiota.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P < 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P < 0.001), and alpha diversity increased from 7 to 21d (P < 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P < 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P > 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2015 ◽  
Vol 1130 ◽  
pp. 63-66 ◽  
Author(s):  
Lorena Escudero ◽  
Jonathan Bijman ◽  
Guajardo M. Mariela ◽  
Juan José Pueyo Mur ◽  
Guillermo Chong ◽  
...  

To understand the microbial community inhabiting in an acidic salt flat the phylogenetic diversity and the geochemistry of this system was compared to acid mine drainage (AMD) systems. The microbial community structure was assessed by DNA extraction/PCR/DGGE and secuencing for the 16S rRNA gene and the geochemistry was analyzed using several approaches. Prediction of metagenome functional content was performed from the 16S rRNA gene survey using the bioinformatics software package Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The geochemical results revealed a much lower iron concentration in the salt flat than in AMD systems (39 and 21804 mg L-1, respectively) and a significant difference in chloride levels. Sequences inferred to be from potential sulfur metabolizing organisms constituted up to 70% of the microbial community in the acidic salt flat meanwhile predominat iron-metabolizing acidophile populations were reported in AMD systems. Interestingly, the microbial assemblage in the acidic salt flat was dominated by mixotrophic and organotrophic sulfur oxidizers as well as by photoautotrophic acidophiles. Our results suggests that the salt concentration in Salar de Gorbea (average Cl-= 40 gL-1) is in the limit for the occurrence of chemolithotrophic oxidation of sulfur compounds. In addition, the investigation allows concluding that salinity rather than extremes of pH is the major environmental determinant of microbial community composition.


2010 ◽  
Vol 1 (2) ◽  
pp. 197-207 ◽  
Author(s):  
W. Fernando ◽  
J. Hill ◽  
G. Zello ◽  
R. Tyler ◽  
W. Dahl ◽  
...  

The effects of diets supplemented with either chickpea or its main oligosaccharide raffinose on the composition of the faecal microbial community were examined in 12 healthy adults (18-65 years) in a randomised crossover intervention study. Subjects consumed their usual diet supplemented with soups and desserts that were unfortified, or fortified with either 200 g/d of canned chickpeas or 5 g/d of raffinose for 3 week periods. Changes in faecal bacterial populations of subjects were examined using 16S rRNA-based terminal restriction fragment length polymorphisms (T-RFLP) and clone libraries generated from the diet pools. Classification of the clone libraries and T-RFLP analysis revealed that Faecalibacterium prausnitzii, reported to be an efficient butyrate producer and a highly metabolically active bacterium in the human intestinal microbiota, was more abundant in the raffinose diet and the chickpea diet compared to the control diet. However, no significant difference was observed in the faecal total short chain fatty acid concentration or in the levels of the components (butyrate, acetate and propionate) with the chickpea diet or the raffinose diet compared to the control diet. Bifidobacterium species were detected by T-RFLP in all three diet groups and quantitative real-time PCR (qPCR) analysis showed a marginal increase in 16S rRNA gene copies of Bifidobacterium with the raffinose diet compared to control (P>0.05). The number of individuals showing TRFs for the Clostridium histolyticum - Clostridum lituseburense groups, which include pathogenic bacteria species and putrefactive bacteria, were lower in the chickpea diet compared to the other two treatments. Diet appeared to affect colonisation by a high ammonia-producing bacterial isolate which was detected in 83%, 92% and 42% of individuals in the control, raffinose and chickpea groups, respectively. Our results indicate that chickpea and raffinose have the potential to modulate the intestinal microbial composition to promote intestinal health in humans.


2021 ◽  
Author(s):  
Ya-Jou Chen ◽  
Pok Man Leung ◽  
Perran L. M. Cook ◽  
Wei Wen Wong ◽  
Tess Hutchinson ◽  
...  

AbstractThe microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.


2020 ◽  
Author(s):  
Daniela Gaio ◽  
Matthew Z DeMaere ◽  
Kay Anantanawat ◽  
Graeme J Eamens ◽  
Michael Liu ◽  
...  

Abstract BackgroundEarly weaning and intensive farming practices predispose piglets to the development of infectious and often lethal diseases, against which antibiotics are used. Besides contributing to the build-up of antimicrobial resistance, antibiotics are known to modulate the gut microbial composition. Studies have previously investigated the effects of probiotics as alternatives to antibiotic treatment for the prevention of post-weaning diarrhea. In order to describe the post-weaning gut microbiota, and the effects of two probiotics formulations and of intramuscular antibiotic treatment on the gut microbiota, we processed over 800 faecal time-series samples from 126 piglets and 42 sows, generating over 8Tbp of metagenomic shotgun sequence data. Here we describe the animal trial procedures, the generation of our metagenomic dataset and the analysis of the microbial community composition using a phylogenetic framework.ResultsFactors such as age, litter effects, and breed, by significantly correlating with gut microbial community shifts, can be major confounding factors in the assessment of treatment effects. Intramuscular antibiotic treatment and probiotic treatments were found to correlate with alpha and beta diversity, as well as with a transient establishment of Mollicutes and Lactobacillales, respectively. We found the abundance of certain taxa to correlate with weight gain.ConclusionsOur findings demonstrate that breed, litter, and age, are important contributors to variation in the community composition, and that treatment effects of the antibiotic and probiotic treatments were subtle, while host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The current study shows, by means of a phylogenetic diversity framework, that the post-weaning pig gut microbiome appears to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 525
Author(s):  
Brianna L. Boss ◽  
Bianca R. Charbonneau ◽  
Javier A. Izquierdo

The microbial community composition of coastal dunes can vary across environmental gradients, with the potential to impact erosion and deposition processes. In coastal foredunes, invasive plant species establishment can create and alter environmental gradients, thereby altering microbial communities and other ecogeomorphic processes with implications for storm response and management and conservation efforts. However, the mechanisms of these processes are poorly understood. To understand how changing microbial communities can alter these ecogeomorphic dynamics, one must first understand how soil microbial communities vary as a result of invasion. Towards this goal, bacterial communities were assessed spatially along foredune microhabitats, specifically in barren foredune toe and blowout microhabitats and in surrounding vegetated monocultures of native Ammophila breviligulata and invasive Carex kobomugi. Across dune microhabitats, microbial composition was more dissimilar in barren dune toe and blowout microhabitats than among the two plant species, but it did not appear that it would favor the establishment of one plant species over the other. However, the subtle differences between the microbial community composition of two species could ultimately aid in the success of the invasive species by reducing the proportions of bacterial genera associated exclusively with A. breviligulata. These results suggest that arrival time may be crucial in fostering microbiomes that would further the continued establishment and spread of either plant species.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yale Deng ◽  
Fan Zhou ◽  
Yunjie Ruan ◽  
Bin Ma ◽  
Xueyan Ding ◽  
...  

Integrated multi trophic aquaculture (IMTA) improves the production of aquatic animals by promoting nutrient utilization through different tropical levels. Microorganisms play an important role in elements cycling, energy flow and farmed-species health. The aim of this study was to evaluate how feed types, fresh frozen fish diet (FFD) or formulated diet (FD), influence the microbial community diversity and functionality in both water and sediment in a marine IMTA system. Preferable water quality, higher animal yields and higher cost efficiency were achieved in the FD pond. Feed types changed the pond bacterial community distribution, especially in the rearing water. The FFD pond was dominated with Cyanobacteria in the water, which played an important role in nitrogen fixation through photosynthesis due to the high nitrogen input of the frozen fish diet. The high carbohydrate composition in the formulated diet triggered higher metabolic pathways related to carbon and lipid metabolism in the water of the FD pond. Sediment had significantly higher microbial diversity than the rearing water. In sediment, the dominating genus, Sulfurovum and Desulfobulbus, were found to be positively correlated by network analysis, which had similar functionality in sulfur transformation. The relatively higher rates of antibiotic biosynthesis in the FFD sediment might be related to the pathogenic bacteria introduced by the trash fish diet. The difference in microbial community composition and metabolic pathways may be associated with the different pathways for nutrient cycling and animal growth performance. The formulated diet was determined to be more ecologically and economically sustainable than the frozen fish diet for marine IMTA pond systems.


Sign in / Sign up

Export Citation Format

Share Document