scholarly journals Design and Field Implementation of a Low-Cost, Open-Hardware Platform for Hydrological Monitoring

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3099
Author(s):  
Daniel A. Segovia-Cardozo ◽  
Leonor Rodríguez-Sinobas ◽  
Freddy Canales-Ide ◽  
Sergio Zubelzu

Hydrologic processes acting on catchments are complex and variable, especially in mountain basins due to their topography and specific characteristics, so runoff simulation models and water management are also complex. Nevertheless, model parameters are usually estimated on the basis of guidelines from user manuals and literature because they are not usually monitored, due to the high cost of conventional monitoring systems. Within this framework, a new and promising generation of low-cost sensors for hydrologic monitoring, logging, and transition has been developed. We aimed to design a low-cost, open-hardware platform, based on a Raspberry Pi and software written in Python 3, for measuring, recording, and wireless data transmission in hydrological monitoring contexts. Moreover, the data are linked to a runoff model, in real time, for flood prevention. Complementarily, it emphasizes the role of the calibration and validation of soil moisture, rain gauges, and water depth sensors in laboratories. It was installed in a small mountain basin. The results showed mean absolute errors of ±2.2% in soil moisture, ±1 mm in rainfall, and ±0.51 cm in water depth measurements; they highlight the potential of this platform for hydrological monitoring and flood risk management.

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3924 ◽  
Author(s):  
Toride ◽  
Sawada ◽  
Aida ◽  
Koike

The assimilation of radiometer and synthetic aperture radar (SAR) data is a promising recent technique to downscale soil moisture products, yet it requires land surface parameters and meteorological forcing data at a high spatial resolution. In this study, we propose a new downscaling approach, named integrated passive and active downscaling (I-PAD), to achieve high spatial and temporal resolution soil moisture datasets over regions without detailed soil data. The Advanced Microwave Scanning Radiometer (AMSR-E) and Phased Array-type L-band SAR (PALSAR) data are combined through a dual-pass land data assimilation system to obtain soil moisture at 1 km resolution. In the first step, fine resolution model parameters are optimized based on fine resolution PALSAR soil moisture and moderate-resolution imaging spectroradiometer (MODIS) leaf area index data, and coarse resolution AMSR-E brightness temperature data. Then, the 25 km AMSR-E observations are assimilated into a land surface model at 1 km resolution with a simple but computationally low-cost algorithm that considers the spatial resolution difference. Precipitation data are used as the only inputs from ground measurements. The evaluations at the two lightly vegetated sites in Mongolia and the Little Washita basin show that the time series of soil moisture are improved at most of the observation by the assimilation scheme. The analyses reveal that I-PAD can capture overall spatial trends of soil moisture within the coarse resolution radiometer footprints, demonstrating the potential of the algorithm to be applied over data-sparse regions. The capability and limitation are discussed based on the simple optimization and assimilation schemes used in the algorithm.


2015 ◽  
Vol 16 (5) ◽  
pp. 1981-2000 ◽  
Author(s):  
Youlong Xia ◽  
Michael B. Ek ◽  
Yihua Wu ◽  
Trent Ford ◽  
Steven M. Quiring

Abstract In this second part of a two-part paper, the impacts of soil texture and vegetation type misclassification and their combined effect on soil moisture, evapotranspiration, and total runoff simulation are investigated using the Noah model. The results show that these impacts are significant for most regions and soil layers, although they vary depending on soil texture classification, vegetation type, and season. The use of site-observed soil texture classification and vegetation type in the model does not necessarily improve anomaly correlations and reduce mean absolute error for soil moisture simulations. Instead, results are mixed when examining all regions and soil layers. This is attributed to the compensation effects (e.g., effect of ill-calibrated model parameters), as Noah has been more or less calibrated with model-specified soil texture classification and vegetation type. The site-based analysis shows that Noah can reasonably simulate the variation of daily evapotranspiration, soil moisture, and total runoff when soil texture classification (vegetation type) is corrected from loam (forest) to clay (grasslands) or vice versa. This suggests that the performance of Noah can be further improved by tuning model parameters when site-observed soil texture and vegetation type are used.


Author(s):  
Abderrahmane Adda Benattia ◽  
Mohamed Moussa ◽  
Abdelhalim Benachenhou ◽  
Abdelhamid Mebrouka

<p class="0abstract">Most of currently remote laboratories implementations include interactive experimentation. In this case, students use real devices and equipment to perform real experiments, which need some flexibility of interaction with the hardware platform. The hardware platform is composed of a Raspberry Pi as a lab server, a switching board (SB), a practical work circuit board and some measurement instruments. The SB is used to make configuration of experimentation by establishing connection between the practical work circuit and measurement instruments. During the experimentation process, students change the setup using a web page. In the background, the hardware configuration is realized using SB, which is controlled by the lab server. The purpose of this work is to develop a new SB in order to provide more possibilities, interaction flexibility with the hardware platform, ease of use, improve performance in response time and finally reduce the cost of the hardware. The SB is based on switches instead of relays. This board can be plugged directly on a Raspberry Pi to facilitate the assembly. It extends the “SPI” bus in order to control some electronic components such as digital potentiometers. Its use is illustrated with a circuit with multiple combinations.</p>


Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 19639-19659 ◽  
Author(s):  
Giovanni Bitella ◽  
Roberta Rossi ◽  
Rocco Bochicchio ◽  
Michele Perniola ◽  
Mariana Amato

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3056
Author(s):  
Baiqian Shi ◽  
Stephen Catsamas ◽  
Peter Kolotelo ◽  
Miao Wang ◽  
Anna Lintern ◽  
...  

High-resolution data collection of the urban stormwater network is crucial for future asset management and illicit discharge detection, but often too expensive as sensors and ongoing frequent maintenance works are not affordable. We developed an integrated water depth, electrical conductivity (EC), and temperature sensor that is inexpensive (USD 25), low power, and easily implemented in urban drainage networks. Our low-cost sensor reliably measures the rate-of-change of water level without any re-calibration by comparing with industry-standard instruments such as HACH and HORIBA’s probes. To overcome the observed drift of level sensors, we developed an automated re-calibration approach, which significantly improved its accuracy. For applications like monitoring stormwater drains, such an approach will make higher-resolution sensing feasible from the budget control considerations, since the regular sensor re-calibration will no longer be required. For other applications like monitoring wetlands or wastewater networks, a manual re-calibration every two weeks is required to limit the sensor’s inaccuracies to ±10 mm. Apart from only being used as a calibrator for the level sensor, the conductivity sensor in this study adequately monitored EC between 0 and 10 mS/cm with a 17% relative uncertainty, which is sufficient for stormwater monitoring, especially for real-time detection of poor stormwater quality inputs. Overall, our proposed sensor can be rapidly and densely deployed in the urban drainage network for revolutionised high-density monitoring that cannot be achieved before with high-end loggers and sensors.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 432
Author(s):  
Guenther Retscher ◽  
Alexander Leb

A guidance and information service for a University library based on Wi-Fi signals using fingerprinting as chosen localization method is under development at TU Wien. After a thorough survey of suitable location technologies for the application it was decided to employ mainly Wi-Fi for localization. For that purpose, the availability, performance, and usability of Wi-Fi in selected areas of the library are analyzed in a first step. These tasks include the measurement of Wi-Fi received signal strengths (RSS) of the visible access points (APs) in different areas. The measurements were carried out in different modes, such as static, kinematic and in stop-and-go mode, with six different smartphones. A dependence on the positioning and tracking modes is seen in the tests. Kinematic measurements pose much greater challenges and depend significantly on the duration of a single Wi-Fi scan. For the smartphones, the scan durations differed in the range of 2.4 to 4.1 s resulting in different accuracies for kinematic positioning, as fewer measurements along the trajectories are available for a device with longer scan duration. The investigations indicated also that the achievable localization performance is only on the few meter level due to the small number of APs of the University own Wi-Fi network deployed in the library. A promising solution for performance improvement is the foreseen usage of low-cost Raspberry Pi units serving as Wi-Fi transmitter and receiver.


Sign in / Sign up

Export Citation Format

Share Document