scholarly journals Simultaneous Recovery of Struvite and Irrigation Water for Agricultural Purposes Obtained from Dewatering Liquor through Electrodialysis

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3280
Author(s):  
Petra Malíková ◽  
Katrin Calábková ◽  
Silvie Heviánková ◽  
Jan Halfar ◽  
Iva Kotalová ◽  
...  

Wastewater contains resources, which can be recovered for secondary use if treated properly. Besides research in zero liquid discharge solutions, the aim of the study was a simultaneous recovery of products from a wastewater treatment plant’s dewatering liquor. To be specific, we investigated a simultaneous recovery of struvite and irrigation water using electrodialysis (ED) in laboratory experiments. Two products were obtained from ED—concentrate and diluate. The concentrate was precipitated to obtain struvite. On average, 11 g of wet precipitate (including 17.58% of dry solids) were obtained from 1 L of concentrate. Crystal phases were confirmed by powder X-ray diffraction (XRD), with showing 94–97% recovery of struvite, while the remaining 3–6% were identified as hazenite. The average yield of crystal struvite was 1.76 g. Both struvite and hazenite may further be used as a fertilizer. Next, we suggest using the second ED product, the diluate, as irrigation water if it meets the irrigation water requirements. Attention was paid to the concentrations of dissolved solids (DS) in diluate, which decreased by an average of 93% compared to the input values in the dewatering liquor. In line with the observed Czech or EU standards indicators, we can say that the diluate can be used in agriculture, namely as irrigation water (Category I—water suitable for irrigation).

2007 ◽  
Vol 336-338 ◽  
pp. 1868-1871 ◽  
Author(s):  
Cheng Fu Yang ◽  
Chien Min Cheng ◽  
Ho Hua Chung ◽  
Chao Chin Chan

5~15 wt% MgO-CaO-Al2O3-SiO2 (MCAS, fabricated by sol-gel method) glass is used as the sintering aid of AlN ceramics. The sintering is proceeded from 1350oC~1550oC, scanning electron microscope is used to observe the sintered morphologies and X-ray diffraction pattern are used to confirm the crystal structures. From the SEM observations, as 10wt% and 15wt% MCAS is added, AlN ceramics can be densified at 1500oC and 1450oC, which are much lower than the before studies were. From the X-ray diffraction patterns, the crystal phases of MCAS-AlN ceramics are AlN, Al2O3, and cordierite phases. In this study, the dielectric characteristics of MCAS-AlN ceramics are also developed as a function of MCAS content and sintering temperature.


1990 ◽  
Vol 187 ◽  
Author(s):  
A. Peter Jardine ◽  
Hong Zhang ◽  
Lysa D. Wasielesky

AbstractThin-films of Ni and Ti were formed by sputter co-deposition of Ni and Ti onto amorphous SiO2 and single crystal NaCl and Sapphire substrates. Films were characterized as follows: a) The chemical composition of the films was analysed by EDAX b) The gross morphology was examined by Scanning Electron Microscopy. c) The crystal phases were indentified by X-ray diffraction and Electron diffraction. Intermetallic NiTi has been identified in samples annealed in vacuo at 850°C. Annealing at 500°C in vacuum produced chemical separation of the Ni and Ti. This effect may be due to a narrow solidus region for the existence of NiTi and inhomogeneities due to uneven deposition of the Ni and Ti.


2007 ◽  
Vol 336-338 ◽  
pp. 1590-1592
Author(s):  
Xiao Dong Li ◽  
Jie Mo Tian ◽  
Chen Wang ◽  
Li Min Dong ◽  
Qing Feng Zan

Crystallization behavior of ZrO2-ZnO-Al2O3-SiO2 glass has been studied by differential thermal analysis, X-ray diffraction analysis and scanning electronic microscope. ZrO2 doped in the glass induces the phase separation effectively. The crystal phases obtained are gahnite (ZnAl2O4) and a small amount of ZrO2 phase. SEM photographs show that the crystal phases distribute uniformly in the glass ceramics and the grain sizes of glass ceramics after different heat treatment are less than 60nm.


2013 ◽  
Vol 743 ◽  
pp. 218-222 ◽  
Author(s):  
Yue Hai Song ◽  
Li Jie Ma

An ideal anodes used for the electrochemical oxidation of organic wastewater should have excellent activity, stability and high oxygen evolution potential. In this paper the CNT (Carbon Nanotubes)-PbO2 films electrodeposited on stainless steel were prepared. X-ray diffraction (XRD) patterns and SEM images indicated that CNT particles and PbO2 were able to achieve co-deposit and the composite CNT-PbO2 films were compact. The cyclic voltammograms of the CNT-PbO2 films studied in 0.5M H2SO4 at a scan rate of 100 mV/s showed that the CNT-PbO2 film has high electrochemical stability. The results of wastewater treatment indicated that the CNT-PbO2 anodes have excellent activity in ammonia wastewater treatment.


2011 ◽  
Vol 306-307 ◽  
pp. 455-458 ◽  
Author(s):  
Pei Hao Li ◽  
Wen Jun Qu

Microbial carbonate precipitation had been proposed as alternative technique for improvement in concrete materials. Laboratory experiments were conducted by bacterially mediated carbonate deposition on the surface and subsurface of concrete specimens. The crystal phase, morphology and growth of the crystal deposited on specimens as well as the efficiency of bonding and protection were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and ultrasonic test. Water absorption and the resistance of carbonation of concrete were analyzed by water absorptivity test and concrete accelerated carbonation test, respectively. Results show that phases of crystal are calcite and vaterite. The crystals are deposited uniformly on the surface of specimens. Biodeposotion effectively reduces capillary water uptake and carbonation rate constant.


Author(s):  
Olena Zoria ◽  
Oleksiy Ternovtsev ◽  
Dmytro Zoria

The article is devoted to solving an urgent problem - the development of effective methods of water purification from heavy metal ions from industrial wastewater. Today more emphasis on technologies that allow recycling of precious metals, the organization of return water supply and receipt safe disposal of sludge. Experimental studies of copper ions extraction from industrial wastewater of galvanic production by ferritization method have been carried out. The process of formation of ferromagnetic compounds of copper and iron has been studied. The results of X-ray diffraction analysis of the mineralogical composition of the samples and phase transformations that occur during aging and during the experiment are presented. The lattice constant of the α-ferite phase is calculated. X-ray diffraction analysis confirmed the presence of ferite compounds and metallic copper. In this case, in the process of "aging" of the samples, the amount of the ferrite phase and metallic copper increases. Electron microscopic analysis confirmed that in the surface layer changed due to the formation of new phases, copper-containing iron oxides, the formation of cement copper and cuprospinel simultaneously exist. The influence on the course of the ferritization process of its conditions - the concentration and ratio of copper and iron ions, temperature, pH of the medium, the consumption of oxidant - oxygen is studied. The optimal parameters of the ferritization process for wastewater treatment from copper with an initial concentration of up to 10 g / l are determined. The possibility of formation of copper ferrite without aeration at a temperature of 200 C is shown. The study of physicochemical properties of sediments formed during ferritization is performed. Studies have shown that the residual concentration of copper in the solution after the application of the proposed technology is in the range from 0.14 to 0.6 mg / l. The efficiency of copper removal is 99.98%. It is established that at the process temperature within 50… 700 C, the ratio Cu: Fe = 1: 2.7, pH = 8.8… 10.5 and aeration intensity 4… 8 l / min precipitates are formed, which consist in the vast majority of ferrites and metallic copper.  


2017 ◽  
Vol 866 ◽  
pp. 172-175
Author(s):  
Naris Barnthip ◽  
Puripat Kantha ◽  
Ruamporn Potong ◽  
Nuttapon Pisitpipathsin

Spent coffee grounds (SCGs) are created in a large amount as a processing waste during making the coffee beverages. Due to its properties, this waste is attractive for different applications such as biofuel production, antioxidant capacity, and renewable materials. In this study, the SCGs were firstly washed by distilled water to remove impurities and contaminations. The washed SCGs were dried in an electric oven at 120 °C for 24 h. The dried SCGs were carbonized at various temperatures from 600-1400 °C for 4 h in normal atmosphere by electric furnace to produce the SCGs powders. The as-received powders were characterized to obtain composed elements and phases by Energy-dispersive X-ray spectroscopy (EDX/EDS) and X-ray diffraction (XRD), respectively. X-ray analysis results indicated that the obtained SCGs powders were dominated by carbon-rich phase with stronger bonding at higher carbonizing temperature. This finding was recommended that the SCGs could be considered as a possible candidate of the environmentally friendly materials to prepare and develop the biomass fuel generation.


2016 ◽  
Vol 848 ◽  
pp. 262-271
Author(s):  
Wen Yan Cheng ◽  
Shi Jia Gu ◽  
Bei Ying Zhou ◽  
Lian Jun Wang ◽  
Wei Luo ◽  
...  

A series of ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+, Er3+) ceramics have been successfully prepared by pressureless sintering. The ceramic samples were characterized by X-ray diffraction (XRD), photoluminescence (PL), density and field emission scanning electron microscope (FESEM). The results showed that the phases of the NaYF4:Yb3+, Er3+ ceramic samples transformed when the sintering temperature was changed. The ceramic samples sintered below 600 oC contained both cubic α-NaYF4:Yb3+, Er3+ and hexagonal β-NaYF4:Yb3+, Er3+. The sample sintered at 600oC is the pure hexagonal β-NaYF4:Yb3+, Er3+. When the sintering temperature is above 600 oC, the ceramic samples present the α-NaYF4:Yb3+, Er3+ again. The fluorescence intensity increased firstly and then decreased with the sintering temperature increasing. The luminous intensity of the sample sintered at 600 oC was the highest. The densities of as-prepared ceramic sample increased with the sintering temperature rising. The samples sintered at 600 oC with different holding time possessed the similar crystal phases (β-NaYF4:Yb3+, Er3+) and fluorescence intensity. As the holding time increased, the densities of the samples increased. To obtain more dense ceramics, the ceramics using β-NaYF4:Yb3+, Er3+ powders were prepared by spark plasma sintering (SPS). The maximum relative density reached 97%.


Sign in / Sign up

Export Citation Format

Share Document