Elemental Composition and Crystal Phases of Carbonized Spent Coffee Grounds

2017 ◽  
Vol 866 ◽  
pp. 172-175
Author(s):  
Naris Barnthip ◽  
Puripat Kantha ◽  
Ruamporn Potong ◽  
Nuttapon Pisitpipathsin

Spent coffee grounds (SCGs) are created in a large amount as a processing waste during making the coffee beverages. Due to its properties, this waste is attractive for different applications such as biofuel production, antioxidant capacity, and renewable materials. In this study, the SCGs were firstly washed by distilled water to remove impurities and contaminations. The washed SCGs were dried in an electric oven at 120 °C for 24 h. The dried SCGs were carbonized at various temperatures from 600-1400 °C for 4 h in normal atmosphere by electric furnace to produce the SCGs powders. The as-received powders were characterized to obtain composed elements and phases by Energy-dispersive X-ray spectroscopy (EDX/EDS) and X-ray diffraction (XRD), respectively. X-ray analysis results indicated that the obtained SCGs powders were dominated by carbon-rich phase with stronger bonding at higher carbonizing temperature. This finding was recommended that the SCGs could be considered as a possible candidate of the environmentally friendly materials to prepare and develop the biomass fuel generation.

2013 ◽  
Vol 394 ◽  
pp. 3-7 ◽  
Author(s):  
Antonio Zuorro ◽  
Roberto Lavecchia

Spent coffee grounds (SCG) and coffee silverskin (CS), the two main coffee industry residues, were magnetically modified by contact with an aqueous ferrofluid containing magnetite nanoparticles. The materials were characterized by SEMEDX analysis, X-ray diffraction and FTIR spectroscopy. Batch adsorption experiments were performed to assess their suitability as biosorbents, using methylene blue as a model pollutant. Adsorption equilibrium data were analysed by the Langmuir model, which allowed estimation of the maximum adsorption capacity. The magnetic biosorbents were easily regenerated by treatment with hydrochloric acid.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 497
Author(s):  
Shchetinin ◽  
Aggrey ◽  
Bordyuzhin ◽  
Savchenko ◽  
Gorshenkov ◽  
...  

The structural transformations and magnetic property changes of the Nd16.2FebalCo9.9Ga0.5B7.5 (SG1, SG2) and Nd15.0FebalGa2.0B7.3 (SG3) nanocomposite alloys obtained by melt spinning in the as-quenched state and after annealing at a temperature range of 560–650 °C for 30 min were studied. The methods used were X-ray diffraction analysis, magnetic property measurements, TEM studies, X-ray fluorescence analysis and Mössbauer spectroscopy. Amorphous phase and crystalline phase Nd2Fe14B (P42/mnm) were observed in the alloy after melt spinning. The content of the amorphous phase ranged from 20% to 50% and depended on the cooling rate. Annealing of the alloys resulted in amorphous phase crystallization into Nd2Fe14B and led to the increased coercivity of the alloys up to 1840 kA/m (23.1 kOe) at 600 °C annealing for 30 min. The alloy with the maximum coercivity had a grain size of the Nd2Fe14B phase ≈50–70 nm with an Nd-rich phase between grains.


2017 ◽  
Vol 898 ◽  
pp. 1669-1674 ◽  
Author(s):  
Bin Shao ◽  
Bing Bing Li ◽  
Chun Hong Li ◽  
Yi Long Ma ◽  
Qiang Zheng ◽  
...  

The microstructure and the chemistry distribution of AlNiCo 9 samples were characterized by the X-ray diffraction, magnetic force microscope, field emission scanning electron microscopy and transmission electron microscope. An interface of a high Al content was formed near the FeCo-rich phases with a size of about 30 nm. S elements mainly combined with Ti to form titanium sulfide bars with the length between 70-150 μm, while S elements was not confirmed in the nanostructured FeCo-rich phase and AlNi-rich phase. Si and Nb preferably existed in the NiAl-rich phase, and a higher content Nb near the Cu precipitate boundary was observed. Moreover, the magnetic domain structure of AlNiCo 9 was also studied.


2007 ◽  
Vol 336-338 ◽  
pp. 1868-1871 ◽  
Author(s):  
Cheng Fu Yang ◽  
Chien Min Cheng ◽  
Ho Hua Chung ◽  
Chao Chin Chan

5~15 wt% MgO-CaO-Al2O3-SiO2 (MCAS, fabricated by sol-gel method) glass is used as the sintering aid of AlN ceramics. The sintering is proceeded from 1350oC~1550oC, scanning electron microscope is used to observe the sintered morphologies and X-ray diffraction pattern are used to confirm the crystal structures. From the SEM observations, as 10wt% and 15wt% MCAS is added, AlN ceramics can be densified at 1500oC and 1450oC, which are much lower than the before studies were. From the X-ray diffraction patterns, the crystal phases of MCAS-AlN ceramics are AlN, Al2O3, and cordierite phases. In this study, the dielectric characteristics of MCAS-AlN ceramics are also developed as a function of MCAS content and sintering temperature.


2019 ◽  
Vol 31 (12) ◽  
pp. 2725-2728
Author(s):  
S.D. Yuwono ◽  
D.A. Iryani ◽  
C. Gusti ◽  
Suharto ◽  
Buhani ◽  
...  

In Indonesia especially in Lampung Province, there are a lot of oil palm empty fruit bunches (OPEFB) as an organic material waste. OPEFB is relatively inexpensive lignocellulose material as raw material of cellulose acetate or acetyl cellulose. In a business to bigger added value out of these natural renewable materials, the production of the acetyl cellulose was performed well by the acetylation of cellulose from OPEFB using different methods. These were extensively characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The results indicated that the acetyl cellulose resulted showed similar properties to cotton acetyl cellulose. Degree of substitution of the resultant acetyl cellulose from different methods was improved from 1.86 to 2.60.


2013 ◽  
Vol 583 ◽  
pp. 47-50 ◽  
Author(s):  
Masanobu Kusunoki ◽  
Taiyo Matsuda ◽  
Naoki Fujita ◽  
Yasuhiro Sakoishi ◽  
Ryou Iguchi ◽  
...  

A technique to control the crystallinity of hydroxyapatite (HA) was investigated for applications such as dentistry, regenerative medicine, cell culture scaffolding, and bio-sensors. An amorphous HA film was first produced by pulsed laser deposition. After deposition, it was separated from a substrate as a free-standing sheet. Annealing was then performed to control the crystallinity of the sheet. It was found that conventional annealing in an electric oven was not suitable for HA sheets, because it led to curling and cracking. Since such problems were assumed to be caused by thermal stress, annealing was next carried out with the HA sheet enclosed in HA powder in the center of a metal capsule. This method allowed annealing to be successfully carried out without causing any curling or cracking. Uniform pieces with dimensions of 10 mm × 10 mm cut from a large HA sheet were annealed at temperatures of 200 to 800 ºC and then examined using X-ray diffraction. It was found that the intensity of the diffraction peaks associated with crystalline HA changed with annealing temperature, and that the strongest peaks were observed for the sample annealed at 500 ºC. These results indicate that the crystallinity of the HA sheet can be controlled using the proposed method.


1990 ◽  
Vol 187 ◽  
Author(s):  
A. Peter Jardine ◽  
Hong Zhang ◽  
Lysa D. Wasielesky

AbstractThin-films of Ni and Ti were formed by sputter co-deposition of Ni and Ti onto amorphous SiO2 and single crystal NaCl and Sapphire substrates. Films were characterized as follows: a) The chemical composition of the films was analysed by EDAX b) The gross morphology was examined by Scanning Electron Microscopy. c) The crystal phases were indentified by X-ray diffraction and Electron diffraction. Intermetallic NiTi has been identified in samples annealed in vacuo at 850°C. Annealing at 500°C in vacuum produced chemical separation of the Ni and Ti. This effect may be due to a narrow solidus region for the existence of NiTi and inhomogeneities due to uneven deposition of the Ni and Ti.


Author(s):  
Tomáš Vítěz ◽  
Tomáš Koutný ◽  
Martin Šotnar ◽  
Jan Chovanec

Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG) are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.


2021 ◽  
Vol 13 (20) ◽  
pp. 11395
Author(s):  
Alisson Mendes Rodrigues ◽  
Fabiana Pereira da Costa ◽  
Suellen Lisboa Dias Beltrão ◽  
Jucielle Veras Fernandes ◽  
Romualdo Rodrigues Menezes ◽  
...  

This study presents the development of new eco-friendly mortar compositions containing kaolin residues (KR) and assesses their durability behavior. Firstly, the natural and calcinated kaolin residues (600 °C, 650 °C, 700 °C, 750 °C, and 800 °C) were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), granulometric analysis, and surface area. The kaolin residue calcinated at 800 °C was chosen to be added to new compositions of mortar because it presented the best pozzolanic performance. The aging tests accomplished in internal (Ei) and external (Ee) environments were applied in mortars with a mass proportion of 1:2:6 (cement + KR: lime: sand), in which the KR, calcinated at 800 °C, replaced the cement in the mass fraction of 0%, 5%, 10%, 15%, 20%, and 30%. The Ei was performed for 30, 60, 90, 180, and 360 days, and the Ee for 90; 210; 360; and 512 days. After the aging tests were completed, the mortar compositions containing KR were evaluated to determine their mineralogical phases (XRD), compressive strength (CS), and thermal behavior (DTA and thermogravimetry). In summary, the KR addition to the mortar compositions decreases the mechanical resistance to compression; however, mortars with a substitution of 10% and 20% presented resistance values within the minimum limit of 2.4 MPa established by ASTM C 270.


Sign in / Sign up

Export Citation Format

Share Document