scholarly journals A Physics-Informed, Machine Learning Emulator of a 2D Surface Water Model: What Temporal Networks and Simulation-Based Inference Can Help Us Learn about Hydrologic Processes

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3633
Author(s):  
Reed M. Maxwell ◽  
Laura E. Condon ◽  
Peter Melchior

While machine learning approaches are rapidly being applied to hydrologic problems, physics-informed approaches are still relatively rare. Many successful deep-learning applications have focused on point estimates of streamflow trained on stream gauge observations over time. While these approaches show promise for some applications, there is a need for distributed approaches that can produce accurate two-dimensional results of model states, such as ponded water depth. Here, we demonstrate a 2D emulator of the Tilted V catchment benchmark problem with solutions provided by the integrated hydrology model ParFlow. This emulator model can use 2D Convolution Neural Network (CNN), 3D CNN, and U-Net machine learning architectures and produces time-dependent spatial maps of ponded water depth from which hydrographs and other hydrologic quantities of interest may be derived. A comparison of different deep learning architectures and hyperparameters is presented with particular focus on approaches such as 3D CNN (that have a time-dependent learning component) and 2D CNN and U-Net approaches (that use only the current model state to predict the next state in time). In addition to testing model performance, we also use a simplified simulation based inference approach to evaluate the ability to calibrate the emulator to randomly selected simulations and the match between ML calibrated input parameters and underlying physics-based simulation.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2075
Author(s):  
Óscar Apolinario-Arzube ◽  
José Antonio García-Díaz ◽  
José Medina-Moreira ◽  
Harry Luna-Aveiga ◽  
Rafael Valencia-García

Automatic satire identification can help to identify texts in which the intended meaning differs from the literal meaning, improving tasks such as sentiment analysis, fake news detection or natural-language user interfaces. Typically, satire identification is performed by training a supervised classifier for finding linguistic clues that can determine whether a text is satirical or not. For this, the state-of-the-art relies on neural networks fed with word embeddings that are capable of learning interesting characteristics regarding the way humans communicate. However, as far as our knowledge goes, there are no comprehensive studies that evaluate these techniques in Spanish in the satire identification domain. Consequently, in this work we evaluate several deep-learning architectures with Spanish pre-trained word-embeddings and compare the results with strong baselines based on term-counting features. This evaluation is performed with two datasets that contain satirical and non-satirical tweets written in two Spanish variants: European Spanish and Mexican Spanish. Our experimentation revealed that term-counting features achieved similar results to deep-learning approaches based on word-embeddings, both outperforming previous results based on linguistic features. Our results suggest that term-counting features and traditional machine learning models provide competitive results regarding automatic satire identification, slightly outperforming state-of-the-art models.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2514
Author(s):  
Tharindu Kaluarachchi ◽  
Andrew Reis ◽  
Suranga Nanayakkara

After Deep Learning (DL) regained popularity recently, the Artificial Intelligence (AI) or Machine Learning (ML) field is undergoing rapid growth concerning research and real-world application development. Deep Learning has generated complexities in algorithms, and researchers and users have raised concerns regarding the usability and adoptability of Deep Learning systems. These concerns, coupled with the increasing human-AI interactions, have created the emerging field that is Human-Centered Machine Learning (HCML). We present this review paper as an overview and analysis of existing work in HCML related to DL. Firstly, we collaborated with field domain experts to develop a working definition for HCML. Secondly, through a systematic literature review, we analyze and classify 162 publications that fall within HCML. Our classification is based on aspects including contribution type, application area, and focused human categories. Finally, we analyze the topology of the HCML landscape by identifying research gaps, highlighting conflicting interpretations, addressing current challenges, and presenting future HCML research opportunities.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1694
Author(s):  
Mathew Ashik ◽  
A. Jyothish ◽  
S. Anandaram ◽  
P. Vinod ◽  
Francesco Mercaldo ◽  
...  

Malware is one of the most significant threats in today’s computing world since the number of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention methods are increasingly becoming necessary for computer systems connected to the Internet. This software exploits the system’s vulnerabilities to steal valuable information without the user’s knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-malware products use signatures for detecting known malware. However, the signature-based method does not scale in detecting obfuscated and packed malware. Considering that the cause of a problem is often best understood by studying the structural aspects of a program like the mnemonics, instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted on four datasets using machine learning and deep learning approaches such as Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and we observed promising results using APIs and system calls. On combining APIs/system calls with static features, a marginal performance improvement was attained comparing models trained only on dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


2021 ◽  
Author(s):  
Tuomo Hartonen ◽  
Teemu Kivioja ◽  
Jussi Taipale

Deep learning models have in recent years gained success in various tasks related to understanding information coded in the DNA sequence. Rapidly developing genome-wide measurement technologies provide large quantities of data ideally suited for modeling using deep learning or other powerful machine learning approaches. Although offering state-of-the art predictive performance, the predictions made by deep learning models can be difficult to understand. In virtually all biological research, the understanding of how a predictive model works is as important as the raw predictive performance. Thus interpretation of deep learning models is an emerging hot topic especially in context of biological research. Here we describe plotMI, a mutual information based model interpretation strategy that can intuitively visualize positional preferences and pairwise interactions learned by any machine learning model trained on sequence data with a defined alphabet as input. PlotMI is freely available at https://github.com/hartonen/plotMI.


Author(s):  
Soundariya R.S. ◽  
◽  
Tharsanee R.M. ◽  
Vishnupriya B ◽  
Ashwathi R ◽  
...  

Corona virus disease (Covid - 19) has started to promptly spread worldwide from April 2020 till date, leading to massive death and loss of lives of people across various countries. In accordance to the advices of WHO, presently the diagnosis is implemented by Reverse Transcription Polymerase Chain Reaction (RT- PCR) testing, that incurs four to eight hours’ time to process test samples and adds 48 hours to categorize whether the samples are positive or negative. It is obvious that laboratory tests are time consuming and hence a speedy and prompt diagnosis of the disease is extremely needed. This can be attained through several Artificial Intelligence methodologies for prior diagnosis and tracing of corona diagnosis. Those methodologies are summarized into three categories: (i) Predicting the pandemic spread using mathematical models (ii) Empirical analysis using machine learning models to forecast the global corona transition by considering susceptible, infected and recovered rate. (iii) Utilizing deep learning architectures for corona diagnosis using the input data in the form of X-ray images and CT scan images. When X-ray and CT scan images are taken into account, supplementary data like medical signs, patient history and laboratory test results can also be considered while training the learning model and to advance the testing efficacy. Thus the proposed investigation summaries the several mathematical models, machine learning algorithms and deep learning frameworks that can be executed on the datasets to forecast the traces of COVID-19 and detect the risk factors of coronavirus.


Sign in / Sign up

Export Citation Format

Share Document