scholarly journals The Effect of Chemical Composition and Production Technology on the Mechanical Properties of EN AW-8006 Alloy

2021 ◽  
Vol 4 (1) ◽  
pp. 45-50
Author(s):  
Judit Pázmán ◽  
Jánosné Fehér ◽  
Viktor Gonda ◽  
Balázs Verő

Abstract Aluminum alloys en AW-8006 with three different Fe:Mn ratios were studied. In the experiments, the temperature of the intermediate soft-annealing between the cold rolling processes and the final soft-annealing at the end of the production technology were varied. The processed samples were subjected to tensile testing and hardness measurements. The effect of chemical composition, based on the test results, showed that for samples without intermediate softening, only the increase of iron content has a significant effect on the yield stress, and the change of iron content refined the final grain structure compared to the reference material.

POROS ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Riyan Sanjaya ◽  
Eddy S Siradj

Abstract: The research was conducted because of the many industries that use CuZn 70/30 as a raw material in industrialization. CuZn 70/30 was studied to obtain the strong mechanical properties of brass. Research CuZn 70/30 was evaluated using a process of heating of about 6150 ± 50C and then held for 90 minutes. The next process is the process of cold rolling by using a variety of reduction and then tested by using a Vickers hardness testing, tensile testing, observation of the microstructure. The result of this research is a fine microstructure (below 10 μm), hardness (HV 211.67). Tensile test also conducted to get how much resistance CuZn 70/30 to resist the pull. The cold rolling process causing the decrease the mechanical properties and also increase the plastic properties of the brass. 


2017 ◽  
Vol 380 ◽  
pp. 198-211 ◽  
Author(s):  
A. Al Sumait ◽  
C. Delgado ◽  
F. Aldhabib ◽  
X. Sun ◽  
F. Alzubi ◽  
...  

The objective of the study was to optimize the strength and ductility values of the 4330M steel. Optimization was conducted through different types of heat treatments. Tensile testing, hardness testing, optical microscopy, and Scanning Electron Microscopy (SEM) were used to evaluate the mechanical properties and microstructure of the as-received and the heat treated samples. The alloy was provided from two vendors; vendor H and vendor S. Results showed that by increasing the tempering temperatures, strength values decreases, while ductility values remain unchanged. Vendor H samples had higher strength values and much finer grain structure which was revealed only at 5000x magnification.


Author(s):  
Nataliya Kalinina ◽  
Tetyana Nosova ◽  
Stella Mamchur ◽  
Nataliya Tsokur ◽  
Nikita Komarov

The effect of modification with dispersed compositions on the grain structure and mechanical properties of industrial aluminum alloys has been studied. Aluminum alloys of the Al-Si, Al-Mg-Sc, Al-Cu-Mn systems were modified with dispersed Mg2Si powder with a particle size of up to 200 nm. The amount of modifier to be added to the melt is calculated. The physicochemical properties of dispersed Mg2Si have been studied. Melting of the AMg6, 1570, 2219, AK9ch alloys in the initial state and with the treatment of Mg2Si melts have been carried out. The action of insoluble applications, isomorphic to aluminum, the similarity of the influence of soluble elements holds only when the amount of insoluble addition exceeds the number of crystals formed arbitrarily under the same conditions. Thus, with an increase in the amount of insoluble addition, in particular silicon carbide particles, the grain size first decreases and then remains constant. The mechanism of the influence of dispersed particles of magnesium silicide on the formation of the structure of hypoeutectic aluminum alloys during crystallization is that their bulk is pushed out by the crystallization front into the liquid phase and participates in the refinement of the structural components of the alloy. To determine the optimal amount of silicon carbide modifier, industrial melting and testing were performed on specimens that underwent heat treatment according to the T6 mode (quenching and artificial aging). The quality of cast aluminum alloys during modification depends on many factors: the nature of the dispersed phase, the temperature of the melt, and the modes of its mixing with the introduction of particles. Dependences of the particle size and the amount of the modifier on the mechanical properties of the alloys have been established. The mechanism of interaction of the modifier with aluminum melt during crystallization has been established. In industrial experiments, the most effective size of SiC particles for increasing the σm of the AK9ch alloy from 115 to 260 MPa in the as-cast state has been established. The optimal content of Mg2Si (0.10 %) for increasing the σm of aluminum alloys has been determined.


Heritage ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 2784-2801 ◽  
Author(s):  
Toufa Ouissi ◽  
Gilles Collaveri ◽  
Philippe Sciau ◽  
Jean-Marc Olivier ◽  
Magali Brunet

Aluminum alloys are very interesting witnesses of industrial and technical development. The first ever developed was Duralumin, a light metal with good mechanical properties. In the 1930s, the rise of nationalism stimulated research and development, generating various aluminum alloys. This work reports the comparison of two versions of aluminum alloys, which were found in collected parts of WWII crashed aircraft from four nations: a Messerschmitt Bf 109 (DE), a Dewoitine D.520 (FR), and a P-51 Mustang (USA) and an Avro Lancaster (United Kingdom). The first version of alloy with magnesium content below or equal to 1 wt.% and the second version with higher magnesium content (1.5 wt.%), were identified as respectively AlCuMg1, AlCuMg2 in Germany; Duralumin, Duralumin F.R. in France; Hiduminium DU Brand, Hiduminium 72 in the UK and 17S, 24S in the USA. This study uses a multiscale approach based on historical research complimented by laboratory analyses of materials directly collected on the crashed aircraft. It allows a comparison and a better knowledge of the alloys used in each nations: their chemical composition, designations, microstructure, and mechanical properties are investigated.


2021 ◽  
Vol 118 (2) ◽  
pp. 211
Author(s):  
Xiaofeng Wang ◽  
Hong Liu ◽  
Xiaobo Tang

This paper investigates a comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys through microstructure, texture characterization and tensile test. The results show that they exhibit different microstructure, texture and mechanical properties. In comparison with the alloy sheet with a low weight ratio of Mg to Si (Si-excess), the alloy sheet with a higher weight ratio of Mg to Si (Mg-excess) and additional Zn possesses the finer as-casting and solution treated equiaxed grain structure, less particles with larger size before solution treatment, weaker recrystallization texture mainly including Cube {001}<100> orientation and weaker mechanical properties. The low weight ratio of Mg to Si corresponds to slightly higher yield strength and ultimate tensile strength, but much higher plastic strain ration r, work hardening exponent n values and elongation. Interestingly, Portevin-Le Chatelier (PLC) effect is very prevailed in the alloy sheet with a higher weight ratio of Mg to Si and additional Zn, which is responsible for the low elongation and r value. The alloy containing a low weight ratio of Mg to Si may be beneficial to improve comprehensive mechanical property.


2012 ◽  
Vol 488-489 ◽  
pp. 345-349
Author(s):  
G. Elatharasan ◽  
V.S. Senthil Kumar

Friction stir welding is a technique useful for joining aluminum alloys that are difficult to weld. In recent years, however the focuses has been on welding dissimilar aluminum alloys, and analyze their mechanical properties and micro-structural characteristics. In the present study, the less investigated welding of cast aluminum alloys is considered. Cast aluminum alloys, A356 and A413, commonly used in automotive and aerospace industries, were friction-stir welded and their mechanical properties and micro-structural characteristics were analyzed. On testing their welded region, no welding defects were observed. The welded region exhibited a maximum tensile strength of 90 N/mm2 and Vickers micro-hardness of 56.8. The micro-structural observations at the nugget region revealed a refined grain structure.


2015 ◽  
Vol 60 (4) ◽  
pp. 3101-3108 ◽  
Author(s):  
M.S. Wilk ◽  
R.E. Śliwa

The above paper presents the assumptions and results of the research whose aim was to determine the influence of 2024, 6061 and 7075 aluminum alloys on the final properties of GLARE-type composites. GLARE 3 2/1 type composites, made of two layers of the epoxy prepreg, reinforced with unidirectional glass fibers, arranged in the direction of 0°/90°, and two sheets of aluminum with a thickness of 0.4 mm, were investigated. Composites of various stacking configurations of alloy layers, made of one type of aluminum alloy (so-called ‘homogeneous composites’), and two different alloys (mixed composites), were analyzed. The properties of the composites were evaluated with the use of the mixing rule and compared with the test results. The influence of the used aluminum alloys on mechanical properties of GLARE-type composites has been determined. GLARE-type composite made of 7075 alloy sheets had the most favorable mechanical properties in comparison to properties of composites with 2024 and 6061 sheets. It has been shown how the properties of GLARE-type composites depend on the type of the aluminum alloy. It has been also proved that the properties of GLARE-type composites can be evaluated with the use of the mixing rule.


2011 ◽  
Vol 366 ◽  
pp. 181-186
Author(s):  
Jian Ping Li ◽  
Li Bang Zeng ◽  
Da Heng Mao ◽  
Hong Feng Jiang

With the ultrasound was put into the experiment of cast-rolling lead alloy strip, it broke the dendrite structures and enhanced the under-cooling by the effect of cavity and acoustic streaming. The microstructure comparison of ultrasound and general cast-rolling shows that: The grain size of general cast-rolled lead strip is big; the grain boundary is coarse and the organization structure is uneven. However, the grain structure is refined, smaller grains and uniform organization structure is acquired with ultrasound treatment. Besides, the mechanical properties test results of the two kinds lead alloys shows that the ultrasound cast-rolling lead alloys are better than general cast-rolling. The tensile strength, yield strength and elongation of ultrasound cast-rolling lead strip are increased by 11.30%, 22.15% and 21.74% than that of general cast-rolling lead strip.


2021 ◽  
pp. 21-28
Author(s):  
Marcin Kempa

The article discusses comparative test results concerning two welding methods, i.e. SAW and MAG. The tests involved the making of welded joints in steel P460NL2, the verification of the chemical composition of supplied steel, the comparison of the quality of joints (in accordance with PN-EN ISO 5817) as well as the performance of macroscopic tests and the comparison of mechanical properties and hardness.


2018 ◽  
Vol 1 (1) ◽  
pp. 49-52
Author(s):  
Tünde Kovács ◽  
Péter Pinke

Abstract Ultrasonic welding is very useful for joining thin metal sheets [1, 2]. The effect of ultrasound on microstructure is currently not well understood because the changes produced depend very much on the welding parameters and the properties of the metal being considered. Thin sheets formed by cold rolling acquire a special grain structure. During the welding process the heat produced causes recrystallization; even where heat is not applied in the joining process the recrystallization process alters the mechanical properties within the heat affected zone (HAZ). The mechanical properties of the welded samples depend on the microstructure. In this work we analyse the ultrasonic welding effect on the joint and the HAZ [3, 4].


Sign in / Sign up

Export Citation Format

Share Document