scholarly journals Podocyte Lipotoxicity in CKD

Kidney360 ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 755-762
Author(s):  
Jin-Ju Kim ◽  
Sydney S. Wilbon ◽  
Alessia Fornoni

CKD represents the ninth most common cause of death in the United States but, despite this large health burden, treatment options for affected patients remain limited. To remedy this, several relevant pathways have been identified that may lead to novel therapeutic options. Among them, altered renal lipid metabolism, first described in 1982, has been recognized as a common pathway in clinical and experimental CKD of both metabolic and nonmetabolic origin. This observation has led many researchers to investigate the cause of this renal parenchyma lipid accumulation and its downstream effect on renal structure and function. Among key cellular components of the kidney parenchyma, podocytes are terminally differentiated cells that cannot be easily replaced when lost. Clinical and experimental evidence supports a role of reduced podocyte number in the progression of CKD. Given the importance of the podocytes in the maintenance of the glomerular filtration barrier and the accumulation of TG and cholesterol-rich lipid droplets in the podocyte and glomerulus in kidney diseases that cause CKD, understanding the upstream cause and downstream consequences of lipid accumulation in podocytes may lead to novel therapeutic opportunities. In this review, we hope to consolidate our understanding of the causes and consequences of dysregulated renal lipid metabolism in CKD development and progression, with a major focus on podocytes.

2021 ◽  
pp. 1-14
Author(s):  
Yu Sun ◽  
Sijia Cui ◽  
Yunfeng Hou ◽  
Fan Yi

<b><i>Background:</i></b> Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. <b><i>Summary:</i></b> Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. <b><i>Key Messages:</i></b> Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ke-jia Zhang ◽  
Qi Wu ◽  
Shi-min Jiang ◽  
Lei Ding ◽  
Chao-xia Liu ◽  
...  

Pyroptosis is a pattern of programmed cell death that significantly differs from apoptosis and autophagy in terms of cell morphology and function. The process of pyroptosis is characterized predominantly by the formation of gasdermin protein family-mediated membrane perforation, cell collapse, and the release of inflammatory factors, including IL-1β and IL-18. In recent years, with the rise of pyroptosis research, scholars have devoted time to study the mechanism of pyroptosis in kidney-related diseases. Pyroptosis is probably involved in kidney diseases through two pathways: the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated noncanonical pathway. In addition, some scholars have identified targets for the treatment of kidney-related diseases from the viewpoint of pyroptosis and developed corresponding medicines, which may become a recommendation for prognosis, targeted treatment, and clinical diagnosis of kidney diseases. This paper focuses on the up-to-date advances in the field of pyroptosis, especially on the key pathogenic role of pyroptosis in the development and progression of kidney diseases. It presents a more in-depth understanding of the pathogenesis of kidney diseases and introduces novel therapeutic targets for the prevention and clinical treatment of kidney diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shengyou Yu ◽  
L. Yu

TRPC6, a member of the canonical transient receptor potential channel (TRPC) subfamily, is an important cation selective ion channel on podocytes. Podocytes are highly differentiated cells located on the visceral face of glomerular basement membrane and featured by numerous foot processes, on which nephrin, podocin, and TRPC6 locate. Podocytes and the slit diaphragm (SD) between adjacent foot processes form a selective filtration barrier impermeable to proteins. TRPC6 is very critical for normal podocyte function. To investigate the function of TRPC6 in podocytes and its relation to proteinuria in kidney diseases, we over-expressed TRPC6 in podocytes by puromycin aminonucleoside (PAN) and observed the changes of foot processes, TRPC6 protein distribution, and mRNA expression. Accordingly, in this study, we further investigated the role of specific signaling mechanisms underlying the prosurvival effects of dexamethasone (DEX) on podocyte repair. Our results showed that podocytes processes of overexpressing TRPC6 were reduced remarkably. These changes could be rescued by DEX via blocking TRPC6 channel. Additionally, our results also showed an improvement in TRPC6 arrangement in the cells and decrease of mRNA expression and protein distribution. From these results, we therefore proposed that overexpression of TRPC6 in podocytes may be one of the fundamental changes relating to the dysfunction of the SD and proteinuria. DEX may be maintained the structure and function integrity of SD by blocking TRPC6 signal pathway and played an important role in mechanisms of anti-proteinuria.


2021 ◽  
Author(s):  
Yaakov Nahmias ◽  
Avner Ehrlich ◽  
Konstantinos Ioannidis ◽  
Makram Nasar ◽  
Ismaeel Abu Alkian ◽  
...  

Abstract Viruses are efficient metabolic engineers that actively rewire host metabolic pathways to support their lifecycle, presenting attractive metabolic targets for intervention. Here we chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples. Bulk and single-cell analyses show that viral replication induces endoplasmic stress and lipid accumulation. Protein expression screen suggests a role for viral proteins in mediating this metabolic response even in the absence of replication. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication. Analysis of 3,233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective interventional open-label study was carried out in 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate (TriCor®) in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to control patients admitted during the same period and treated with the standard-of-care. Taken together, our data show that elevated lipid metabolism underlies critical aspects of COVID-19 pathogenesis, suggesting that pharmacological modulation of lipid metabolism should be strongly considered for the treatment of coronavirus infection.


2010 ◽  
Vol 298 (5) ◽  
pp. C973-C978 ◽  
Author(s):  
Mark J. Czaja

Autophagy is a lysosomal degradative pathway critical for the removal and breakdown of cellular components such as organelles and proteins. Despite striking similarities in the regulation and function of autophagy and lipid metabolism, the two processes have only recently been shown to be interrelated. This review details new findings of critical functions for autophagy in lipid metabolism and storage. Studies in hepatocytes and liver have demonstrated that macroautophagy mediates the breakdown of lipids stored in lipid droplets and that an inhibition of autophagy leads to the development of a fatty liver. In contrast, in adipocytes the loss of macroautophagy decreases the amount of lipid stored in adipose tissue through effects on white and brown adipocyte differentiation. Other investigations have indicated that the relationship between autophagy and lipids is bidirectional, with changes in cellular lipid content altering autophagic function. These newly described links between autophagy and lipid metabolism and storage have provided new insights into the mechanisms of both processes. The findings also suggest possible new therapeutic approaches to the problems of lipid overaccumulation and impaired autophagy that occur with aging and the metabolic syndrome.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3712-3712
Author(s):  
Hui Jin ◽  
Zijuan Wu ◽  
Lei Fan ◽  
Luqiao Wang ◽  
Xueying Lu ◽  
...  

Abstract Objective: During tumor development, energy constraints caused by malnourished microenvironments could exert selective pressure on cancer cells. Tumor cells are driven to metabolic reprogramming to meet the increased demand for energy and metabolites for their rapid proliferation and survival. Chronic lymphocytic leukemia (CLL) is a disease with about 1% of CLL cells proliferating every day which is highly than commonly thought. CLL cells were reported to maintain high levels of proliferation through metabolic changes, but extensive studies did not clearly explain the underlying mechanism of driving genes in CLL metabolism. Circular RNA (circRNA) has recently been shown to play an important role in cell metabolism through lipid accumulation. The purpose of this study is to explore the role of circRNA in lipid metabolism of CLL and provide novel therapeutic targets for CLL. Methods: To analyze circRNAs expression profiles and metabolism map in CLL, peripheral blood mononuclear cells (PBMC) from 53 treatment-naïve CLL patients were collected for transcriptome sequencing. Candidate circRNA circRIC8B in a larger cohort of patients was validated and the clinical characteristics were analyzed. Overexpression and knockdown virus were constructed to infect CLL cells, and untargeted metabolomics was used to find the key lipid metabolic pathway modulating by circRIC8B. The oncogenic functions of circRIC8B were further measured in CLL cell lines (MEC-1 and JVM-3) by performing CCK8 assay, flow cytometry, nile red staining and triglyceride detection. Moreover, we explored the molecular mechanisms of circRIC8B and verified the interactions among circRIC8B, miR-199b-5p and LPL by performing RNA-FISH, RIP, dual-luciferase reporter assay and Western blotting. The killing effects of lipid metabolism inhibitors on CLL cells were detected by CCK8 and flow cytometry. Results Transcriptome analysis showed that abnormal lipid metabolism was significantly related to the survival and prognosis of patients with CLL, and circRNAs could be involved in the regulation of lipid metabolism. Kaplan-Meier survival analysis confirmed that patients with higher fatty acid biosynthesis had a significantly lower OS (Figure 1A-B). circRIC8B which is positively correlated with the expression of lipoprotein lipase (LPL) was finally selected for further investigation. qRT-PCR analysis showed that circRIC8B was significantly higher expressed in CLL compared with healthy donors. Moreover, consistent with the sequencing results, circRIC8B was positively correlated with LPL and highly relevant to IGHV region mutation status, which has long been considered as an important prognostic indicator of CLL (Figure 1C). Patients with higher circRIC8B level are associated with worse survival and advanced disease progression (Figure 1D and E). LC-MS/MS results showed that circRIC8B are able to modulated lipid metabolism of CLL cells. Functional analysis demonstrated the promoting role of circRIC8B in cell proliferation. Nile red staining showed lipid accumulation in CLL cells with circRIC8B overexpression increased significantly, while lipid accumulation in circRIC8B knockdown cells decreased significantly, and the quantitative results of triglycerides were similar. Next, we unraveled an original mechanism in CLL that up-regulated circRIC8B was mainly enriched in the cytoplasm, acted as a "sponge" of miR-199b-5p. CCK8 assay, nile red staining showed that the cell viability and lipid accumulating of CLL cell lines were evidently decreased after RNAi of circRIC8B and this result could be reversed by miR-199b-5p inhibitor transfection (Figure 1F-H). In addition, ezetimibe, one of the inhibitors of lipid metabolism was found effectively inhibit the proliferation and promote apoptosis of CLL cells. Conclusions In conclusion, as an independent prognostic factor of CLL, circRIC8B was involved in the progress of CLL disease through the miR-199b-5p/LPL axis. In addition, circRIC8B is a key factor in regulating lipid accumulation in CLL, resulting in significant changes in cellular lipid storage, thus supporting the proliferation of CLL cells. Metabolic inhibitor Ezetimibe can effectively block this process and exert anti-tumor functions. This study provides new clues for the role of circRNA in abnormal lipid metabolism of CLL and novel therapeutic strategy for CLL patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 1 (13) ◽  
pp. 162-168
Author(s):  
Pippa Hales ◽  
Corinne Mossey-Gaston

Lung cancer is one of the most commonly diagnosed cancers across Northern America and Europe. Treatment options offered are dependent on the type of cancer, the location of the tumor, the staging, and the overall health of the person. When surgery for lung cancer is offered, difficulty swallowing is a potential complication that can have several influencing factors. Surgical interaction with the recurrent laryngeal nerve (RLN) can lead to unilateral vocal cord palsy, altering swallow function and safety. Understanding whether the RLN has been preserved, damaged, or sacrificed is integral to understanding the effect on the swallow and the subsequent treatment options available. There is also the risk of post-surgical reduction of physiological reserve, which can reduce the strength and function of the swallow in addition to any surgery specific complications. As lung cancer has a limited prognosis, the clinician must also factor in the palliative phase, as this can further increase the burden of an already compromised swallow. By understanding the surgery and the implications this may have for the swallow, there is the potential to reduce the impact of post-surgical complications and so improve quality of life (QOL) for people with lung cancer.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 82
Author(s):  
Amandeep Kaur ◽  
Louise Ferguson ◽  
Niels Maness ◽  
Becky Carroll ◽  
William Reid ◽  
...  

Pecan is native to the United States. The US is the world’s largest pecan producer with an average yearly production of 250 to 300 million pounds; 80 percent of the world’s supply. Georgia, New Mexico, Texas, Arizona, Oklahoma, California, Louisiana, and Florida are the major US pecan producing states. Pecan trees frequently suffer from spring freeze at bud break and bloom as the buds are quite sensitive to freeze damage. This leads to poor flower and nut production. This review focuses on the impact of spring freeze during bud differentiation and flower development. Spring freeze kills the primary terminal buds, the pecan tree has a second chance for growth and flowering through secondary buds. Unfortunately, secondary buds have less bloom potential than primary buds and nut yield is reduced. Spring freeze damage depends on severity of the freeze, bud growth stage, cultivar type and tree age, tree height and tree vigor. This review discusses the impact of temperature on structure and function of male and female reproductive organs. It also summarizes carbohydrate relations as another factor that may play an important role in spring growth and transition of primary and secondary buds to flowers.


2021 ◽  
Vol 15 (1) ◽  
pp. 21-35
Author(s):  
Yana Geng ◽  
Klaas Nico Faber ◽  
Vincent E. de Meijer ◽  
Hans Blokzijl ◽  
Han Moshage

Abstract Background Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). Purposeand Aim This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document