scholarly journals Spatial Relationships Between pH and Vegetation Pattern in an Area Contaminated with Heavy Metals

2003 ◽  
pp. 140-143
Author(s):  
Elza Kovács ◽  
János Tamás

It is not possible to gain information on the risk factor representing the bioavailability and the mobility of the contaminants only on the basis of their total concentrations. Especially, in case of heavy metals, which can be charaterised with very different chemical forms and their mobil and mobilizable parts are determined by complex balances highly sensitive to the changing environmental conditions. Considering mine tailings, however, the toxic elements are basically in ore forms having low adsorption capacity, thus the heavy metal ion concentration in solution is governed mainly by the pH conditions. In Gyöngyösoroszi, the spatial distribution of the total heavy metal concentrations as well as that of pH values determining the bioavailable part of the toxic elements were estimated and by mapping the vegetation pattern, relationship was analysed among the total Zn, Cu, Pb and As concentrations, the pH and the species present. Results show that the presence of the certain plant species is highly determined by the pH on the mine tailing material, the highest vegetation density was found where the bioavailability of the toxic elements were considered the smallest as a result of the neutral pH. As a result, high diversity could be found even in places where the total zinc, copper, lead and arsenic concentrations were extreme. In addition, plant species could be identified, which are tolerant to toxic elements and present even if the pH is low and the bioavailable part of the heavy metals is relatively high.

2012 ◽  
Vol 65 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Nalan Oya San ◽  
Gönül Dönmez

The passive removal of commonly used reactive dye and two heavy metals, from aqueous solutions by inexpensive biomaterial, yeast Rhodotorula muciloginosa biomass, termed biosorption, was studied with respect to pH, initial dye concentration and initial metal ion concentration. The biomass exhibited maximum dye and chromium(VI) uptake at pH 5 and pH 6 for nickel(II) in media containing 50 mg/L heavy metal and 50 mg/L remazol blue. It was found that the highest chromium(VI) removal yields measured were 31.3% for 49.0 mg/l initial chromium(VI) concentrations. The nickel(II) removal yield was 32.5% for 22.3 mg/L. Higher R. Blue removal yields were obtained, such as 77.1% for 117.5 mg/L. The maximum dye biosorption yield was investigated in medium with a constant dye (∼50 mg/L) and increasing heavy metal concentration. In the medium with 48.8, 103.8 and 151.8 mg/L chromium(VI) and constant dye concentration, the maximum chromium(VI) biosorption was 7.4, 9.3 and 17.1%, whereas the maximum dye biosorption was 61.6, 56.6 and 55.9%. The maximum nickel(II) biosorptions in the medium with dye were 38.1, 22.1 and 8.8% at 23.7, 37.7 and 60.1 mg/L nickel(II) concentrations. In these media, dye biosorptions were 93.9, 86.4 and 93.3%, respectively.


Author(s):  
Gharde A. D. ◽  
Gharde B. D.

This work reports the characterization of intensive industrial and agricultural activity is the basic reason of enormous pollution of the environment. Heavy metals generally occur in water in low concentration as a result of metal industries and partly through geological processes, but these cause direct toxicity both to human and other living beings. Due to their presence obeyed the specified limit. Heavy metals in wastewater has emerged as focus of environment remediation efforts of industrialization, urbanization with new technological advantages. The natural bodies of water are polluted by means of different contaminant like organic refractories, heavy metal ions etc. The significant concentration of some of the heavy metal ions in water are toxic to human being, animals as well as aquatic organisms. Some heavy metal ions even at the trace level has been recognized toxic to the public health. Many metals have been evaluated toxic to aquatic life certain to threshold toxicity level. The effect of tree bark for Cu(II) from copper sulphate on the metal content of industrial wastewater was investigated in the pH of 4-6. It is observed that the method of binding follows the first order adsorption rate expression such as effect of pH, agitation time, doses of bark substrate, initial metal ion concentration, effect of varying temperature were also studied.


2019 ◽  
Vol 4 (1) ◽  
pp. 42
Author(s):  
Linda Hevira ◽  
Rahmiana Zein ◽  
Edison Munaf

On cause of environmental pollution is the presence of heavy metals. Heavy metal such as Cd (II), Pb (II) and Cu (II) are the metals commonly found in water pollution. The untapped shell of ketapang fruit can be used as an absorbent because it has an active side that can bind to the metal ion. From the research with batch sistem was found that the absorption efficiency of metal Cd (II), Pb (II) and Cu (II) by shell of ketapang will be optimum if done at pH 6 with contact time 60 minute for ion Cd(II), 45 minute for ion Pb (II) and 75 minute for ion Cu. The optimum stirring speed of each is 100 rpm, 150 rpm and 100 rpm. The optimum absorption efficiency occured at concentration of 10 mg/L on metal Cd (II) and Pb (II) that are 86,38 % and 98,51 % while the Cu (II) metal at 5 mg/L concentration is 94,06 % with mass of ketapang 0.1 g,0.5 g and 0.5 g each metal ion. The metal ion concentration was analyzed by AAS and the dominant functional group binding metal ions was analiyzed by FTIR Salah satu penyebab pencemaran lingkungan adalah terdapatnya logam berat. Logam berat seperti Cd, Pb dan Cu merupakan logam yang sering ditemukan dalam pencemaran air. Cangkang buah ketapang yang tidak termanfaatkan dapat dijadikan sebagai penyerap karena mempunyai sisi aktif yang dapat berikatan dengan ion logam. Dari penelitian dengan sistem batch didapatkan bahwa efisiensi penyerapan ion logam Cd (II), Pb (II) dan Cu II) oleh cangkang buah ketapang akan optimum jika dilakukan pada pH 6 dengan waktu kontak 60 menit untuk ion Cd (II), 45 menit untuk ion Pb (II) dan 75 menit untuk ion Cu (II). Kecepatan pengadukan optimum masing-masingnya adalah 100 rpm, 150 rpm dan 100 rpm. Efisiensi penyerapan optimum terjadi pada konsentrasi 10 mg/L pada logam Cd(II) dan Pb (II) yaitu 86,38 % dan 98, 51 %, sedangkan logam Cu (II) terjadi pada konsentrasi 5 mg/L yaitu 94,06 % dengan massa cangkang buah ketapang 0.1 g, 0.5 dan 0.5 g pada masing-masing ion logam. Konsentrasi ion logam dianalisis dengan Spektrofotometri Serapan Atom dan gugus fungsi dominan yang mengikat ion logam dianalisis dengan FTIR.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4390
Author(s):  
Sevil Savaskan Yilmaz ◽  
Nuri Yildirim ◽  
Murat Misir ◽  
Yasin Misirlioglu ◽  
Emre Celik

Poly(acrylic acid/Kryptofix 23-Dimethacrylate) superabsorbent polymer [P (AA/Kry23-DM) SAP] was synthesized by solution polymerization to remove Co, Ni, Cu, Cd, Mn, Zn, Pb, Cr, and Fe ions in water and improve the quality of the water. Kry23-DM cross-linker (1,4,7,13,16-Pentaoxa-10,19 diazo cyclohexene icosane di methacrylate) was synthesized using Kry23 and methacryloyl chloride. The characterization of the molecules was done by FTIR, TGA, DSC, and SEM techniques. The effects of parameters such as pH, concentration, and the metal ion interaction on the heavy metal ions uptaking of SAP was investigated. It was observed that P (AA/Kry23-DM) SAP has maximum water absorption, and the absorption increases with the pH increase. Adsorption rates and sorption capacity, desorption ratios, competitive sorption (qcs), and distribution coefficient (log D) of P(AA/Kry23-DM) SAP were studied as a function of time and pH with the heavy metal ion concentration. Langmuir and Freundlich isotherms of the P (AA/Kry23-DM) SAP were investigated to verify the metal uptake. Molecular mechanic (MM2), Assisted Model Building with Energy Refinement (AMBER), and optimized potentials for liquid simulations (OPLS) methods. were used in quantum chemical calculations for the conformational analysis of the cross-linker and the SAP. ΔH0f calculations of the cross-linker and the superabsorbent were made using Austin Model 1(AM1) method.


2012 ◽  
Vol 65 (9) ◽  
pp. 1570-1576 ◽  
Author(s):  
Guanling Song ◽  
Lijing Cao ◽  
Xiao Chen ◽  
Wenhua Hou ◽  
Qunhui Wang

A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Qmax of the EAF steel slag on Cu2+, Cd2+, and Pb2+ improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu2+, Cd2+, and Pb2+ were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.


2012 ◽  
Vol 37 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Habib Mohammad Naser ◽  
Sarmin Sultana ◽  
Rebeca Gomes ◽  
Shamsun Noor

Levels of lead, cadmium, and nickel in roadside soils and vegetables along a  major highway in Gazipur, Bangladesh were investigated. Soil samples were  collected at distances of 0, 50, 100, and 1000 m (meter) from the road. The  concentrations of lead (Pb) and nickel (Ni) in soil and vegetables (bottle gourd  and pumpkin) decreased with distance from the road, indicating their relation to  traffic and automotive emissions. The concentration of cadmium (Cd) was found  to be independent of distance from road. There were significant differences in  the concentrations of lead, cadmium, and nickel for different plant species and  soils at various distances. The heavy metals contents both in the soils and  vegetables for every distance from the road was found in the order  nickel>lead>cadmium. DOI: http://dx.doi.org/10.3329/bjar.v37i1.11170 Bangladesh J. Agril. Res. 37(1): 9-17, March 2012


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2309-2312 ◽  
Author(s):  
J. S. D'Avila ◽  
C. M. Matos ◽  
M. R. Cavalcanti

The processes used to remove heavy metals from inorganic wastewater have in general low efficiency. The use of activated peat obtained by using a process similar to a cation exchange reaction increases the removal efficiency up to five times when compared with peat “in natura”. The main objective of this work is to show the fundamental mathematical model, governed by diffusion process and the algorithms utilized to design the batch and the continuous feed stirred tank reactors or in some cases a fixed bed reactor. The principal dimensions of these equipments are obtained from the knowledge of the activated peat's cation exchange capacity used in the process, and the main chemical characteristics of the heavy metal ion contained in the wastewater. Besides, two important parameters are also included: the ion concentration and the efficiency of the process obtained from laboratory kinetics experiments. For example Pb+2 is removed l:rom a wastewater at a concentration of 50g/m3 in five minutes or less, with an efficiency of 98%.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document