scholarly journals DNA Dumbbell and Chameleon Silver Nanoclusters for miRNA Logic Operations

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Yiting Jiang ◽  
Peng Miao

Multiplex miRNA analysis is a fundamental issue for exploring a complex biological system and early diagnosis of miRNA-related diseases. Herein, we have developed a series of novel logic gates for miRNA analysis coupling DNA nanostructures and chameleon silver nanoclusters (AgNCs). DNA dumbbell structures are firstly designed with two independent nucleation sequences for AgNCs at the 5′ and 3′ ends, respectively. By introducing different miRNA inputs, separations of two AgNCs are controlled and the fluorescence property of AgNCs changes. By studying the ratiometric fluorescence responses, sensitive and selective analysis of multiple miRNAs can be achieved. The present work provides powerful tools for miRNA diagnostics and may also guide future DNA nanostructure-based logic gates.

Author(s):  
Meiqing Liu ◽  
Ren Shen ◽  
Haoran Li ◽  
Yanwei Jia ◽  
Pui-In Mak ◽  
...  

MicroRNAs (miRNAs) are important biomarkers for diseases diagnosis and prognosis. Accurate and robust detection of miRNAs greatly facilitates the early diagnosis and progress assessment of certain cancers. The current miRNAs...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles El Helou ◽  
Philip R. Buskohl ◽  
Christopher E. Tabor ◽  
Ryan L. Harne

AbstractIntegrated circuits utilize networked logic gates to compute Boolean logic operations that are the foundation of modern computation and electronics. With the emergence of flexible electronic materials and devices, an opportunity exists to formulate digital logic from compliant, conductive materials. Here, we introduce a general method of leveraging cellular, mechanical metamaterials composed of conductive polymers to realize all digital logic gates and gate assemblies. We establish a method for applying conductive polymer networks to metamaterial constituents and correlate mechanical buckling modes with network connectivity. With this foundation, each of the conventional logic gates is realized in an equivalent mechanical metamaterial, leading to soft, conductive matter that thinks about applied mechanical stress. These findings may advance the growing fields of soft robotics and smart mechanical matter, and may be leveraged across length scales and physics.


2021 ◽  
Vol 12 (15) ◽  
pp. 5473-5483
Author(s):  
Zhixin Zhou ◽  
Jianbang Wang ◽  
R. D. Levine ◽  
Francoise Remacle ◽  
Itamar Willner

A nucleic acid-based constitutional dynamic network (CDN) provides a single functional computational module for diverse input-guided logic operations and computing circuits.


2018 ◽  
Vol 29 (29) ◽  
pp. 295501 ◽  
Author(s):  
Congcong Bu ◽  
Lixuan Mu ◽  
Xingxing Cao ◽  
Min Chen ◽  
Guangwei She ◽  
...  

The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7340-7348
Author(s):  
Huasong Bai ◽  
Shengjun Bu ◽  
Wensen Liu ◽  
Chengyu Wang ◽  
Zhongyi Li ◽  
...  

We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 542 ◽  
Author(s):  
Haifeng Zhang ◽  
Zhaowei Zhang ◽  
Mingyu Gao ◽  
Li Luo ◽  
Shukai Duan ◽  
...  

A memristor is a nanoscale electronic element that displays a threshold property, non-volatility, and variable conductivity. Its composite circuits are promising for the implementation of intelligence computation, especially for logic operations. In this paper, a flexible logic circuit composed of a spintronic memristor and complementary metal-oxide-semiconductor (CMOS) switches is proposed for the implementation of the basic unbalanced ternary logic gates, including the NAND, NOR, AND, and OR gates. Meanwhile, due to the participation of the memristor and CMOS, the proposed circuit has advantages in terms of non-volatility and load capacity. Furthermore, the input and output of the proposed logic are both constant voltages without signal degradation. All these three merits make the proposed circuit capable of realizing the cascaded logic functions. In order to demonstrate the validity and effectiveness of the entire work, series circuit simulations were carried out. The experimental results indicated that the proposed logic circuit has the potential to realize almost all basic ternary logic gates, and even some more complicated cascaded logic functions with a compact circuit construction, high efficiency, and good robustness.


2019 ◽  
Vol 116 (15) ◽  
pp. 7543-7548 ◽  
Author(s):  
Huan Zhang ◽  
Gozde S. Demirer ◽  
Honglu Zhang ◽  
Tianzheng Ye ◽  
Natalie S. Goh ◽  
...  

Delivery of biomolecules to plants relies onAgrobacteriuminfection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene inNicotiana benthamianaleaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.


2020 ◽  
Vol 391 ◽  
pp. 123526
Author(s):  
Jingze Li ◽  
Shuming Zhang ◽  
Ying Yu ◽  
Yumin Wang ◽  
Li Zhang ◽  
...  

2013 ◽  
Vol 791-793 ◽  
pp. 1845-1849
Author(s):  
Xu Dong Fang ◽  
Yu Hua Tang ◽  
Jun Jie Wu

With the realization of physical memristors, using memristors to perform stateful logic operations has been demonstrated feasible. In such operations, memristors simultaneously serve as latches and logic gates, thus enabling the in-situ computing which may open a new computing paradigm for computer architecture. In this paper, we first analyze two types of typical memristive stateful logic gates to reveal the working mechanism of the stateful logic, and then review the recent researches on the memristive stateful logic, and finally discuss the pros and cons of the stateful logic. We reach the conclusion that the stateful logic promises a novel computing paradigm which may revolutionize the conventional computer architecture, while its development is currently subjected to the state drift problem and is constrained by the lack of a general design methodology and physically verification.


Sign in / Sign up

Export Citation Format

Share Document