scholarly journals Evaluation of Antibiotic Resistance Pattern of Escherichia coli Isolated From Broiler Chickens With Colibacillosis in Ardabil Province, Iran

2020 ◽  
Vol 5 (4) ◽  
pp. 125-130
Author(s):  
Aidin Azizpour ◽  
Ciamak Ghazaei

Introduction: Colibacillosis is one of the most important bacterial diseases of birds that is caused by Escherichia coli. This disease causes considerable economic damage to the poultry industry every year. Various antimicrobial agents are used to reduce the damage caused by this infection. But in recent decades, the increased use of antibiotics has led to the development of resistant genes and, consequently increasing antibiotic resistance of bacteria, leading to a decrease in the efficacy of antibiotics. The purpose of this study was to determine the susceptibility and drug resistance of 178 isolates of 40 chicken flocks in Ardabil province northwest of Iran. Methods: Five carcasses were randomly selected from each flocks with colibacillosis and sampled from liver and heart using sterile swabs. After culture and isolation, colonies were identified by biochemical and serological methods. Antibiotic resistance of all isolates to 19 antibiotics was determined using disk diffusion method based on CLSI guidelines. Results: Of 200 samples, 178 (89%) were isolated, and 22 (11%) did not grow. In this study the highest antibiotic resistance was observed against flumequine (98.31%), nalidixic acid (97.25%), tylosin (97.20%), oxytetracycline (97.20%), chlortetracycline (95.50%), difloxacin (89.32%), doxycycline (81.47%), enrofloxacin (77.53%), sulfamethoxazole + trimethoprim (71.91%), and the lowest antibiotic resistance was recorded for Linco-Spectin (36.52%), chloramphenicol (22.47%), gentamycin (7.30%), fuzbac (5.05%) and ceftriaxone (3.93%). All isolates were highly sensitive to ceftazidime. Conclusion: The results of this study showed a high level of resistance to antibiotics commonly used in poultry industry, which is probably due to improper use of antibiotics in poultries.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
S. A. Omolajaiye ◽  
K. O. Afolabi ◽  
B. C. Iweriebor

Background. Diarrhea has been reported as the leading cause of childhood mortality and morbidity globally but with disproportionate impacts in developing nations. Among bacterial etiologic agents of diarrhea, diarrheagenic Escherichia coli is the main cause of the disease among children under the age of 5 years. This study is aimed at determining the prevalence and antibiogram pattern of diarrheagenic Escherichia coli (DEC) pathotypes associated with diarrhea cases in the study area. Methods. A total of 120 presumptive isolates of E. coli were obtained from diarrheal stool samples from male and female patients below 12 years of age using chromogenic agar. Confirmation of the isolates and screening for virulence genes were determined by polymerase chain reaction (PCR) while antimicrobial susceptibility testing was performed using the disk diffusion method. The presence of antibiotic resistance genes to chloramphenicol and tetracycline among the confirmed isolates was also profiled by PCR based on the observed phenotypic resistance pattern. Results. Of the 120 presumptive isolates, 88.3% (106/120) were confirmed as E. coli through PCR. The molecular pathotyping of the confirmed isolates showed their distribution as 41% (43/106) of diffusely adhering E. coli (DAEC), 17% (18/106) of enterohemorrhagic E. coli (EHEC), 17% (18/106) of enteropathogenic E. coli (EPEC), and 10% (11/106) of enteroinvasive E. coli (EIEC), while enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC) were not detected, and the remaining 15% did not belong to any pathotype. Notably, high resistance of the isolates to commonly used antimicrobials was observed as follows: ampicillin (98%), chloramphenicol (94%), trimethoprim-sulfamethoxazole (96%), and tetracycline (90.6%), while a relatively low number of the confirmed isolates were resistant to ciprofloxacin (45%) and imipenem (36%). In addition, 94% of the isolates that exhibited phenotypic resistance against chloramphenicol harbored the catA1 resistance gene while 89% that showed resistance to tetracycline had tetA genes. Conclusions. These findings showed that DEC could be considered as the leading etiologic bacterial agent responsible for diarrhea in the study community, and the observable high degree of resistance of the isolates to antimicrobial agents is of huge significance, calling for stakeholders to adopt and consolidate the existing antimicrobial stewardship scheme of the government, in order to ensure an uncompromised public health.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Author(s):  
Saroj Sankhi ◽  
Rebanta Kumar Bhattarai ◽  
Hom Bahadur Basnet ◽  
Nirmal Raj Marasine ◽  
Himal Luitel ◽  
...  

This study aimed to identify, evaluate the antibiotic resistance pattern and detect virulence genes iss, and ompT in avian pathogenic Escherichia coli (APEC) from broiler chickens in central Nepal. To determine the antibiotic resistance pattern of the obtained isolates, the Kirby-Bauer disc diffusion method was used with six different commercial antibiotic discs: Amikacin, Gentamycin, Ciprofloxacin, Doxycycline, Chloramphenicol and Levofloxacin. A polymerase chain reaction (PCR) assay was used for the selected isolates (n=40) to screen the presence of the iss and ompT genes after the extraction of DNA using the boiling method Out of 60 suspected Colibacillosis liver samples, 40 were confirmed as E. coli positive The antibiogram profile revealed maximum resistance to Doxycycline (87.5%), followed by Levofloxacin (72.5%), Ciprofloxacin (67.5%), Chloramphenicol (40.0%), Gentamycin (32.5%) and Amikacin (10.0%).. The presence of the iss and ompT genes was found to be 100.0% and 90.0%, respectively. APEC was found to be highly resistant to most of the antibiotics. Virulence-associated genes iss and ompT were obtained at high percentages from Colibacillosis suspected broiler chickens in Chitwan, Nepal. These finding suggests that the judicial use of antimicrobials is compulsory to check antibiotic resistance and Colibacillosis outbreaks in poultry farms.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kiana Karimi ◽  
Omid Zarei ◽  
Parinaz Sedighi ◽  
Mohammad Taheri ◽  
Amin Doosti-Irani ◽  
...  

Aim. Klebsiella pneumoniae (K. pneumoniae) is an encapsulated Gram-negative bacterium that can lead to 14–20% of nosocomial infections. The ability of biofilm formation in this bacterium decreases the host immune response and antibiotic efficacy. This may impose a huge impact on patients and healthcare settings. This study aimed to evaluate the antibiotic resistance pattern and biofilm formation in K. pneumoniae strains isolated from two major Hamadan hospitals, west of Iran. Methods. A total of 83 K. pneumoniae strains were isolated from clinical samples of patients in different wards of Hamadan hospitals from September 2018 to March 2019. Determination of antimicrobial susceptibility was performed using the disk diffusion method. Biofilm formation was evaluated by the crystal violet method. Data were analyzed by the SPSS software and chi-square test. Results. The results showed that clinical samples included 18 urinary tract samples (22%), 6 wound samples (7%), 6 blood samples (7%), 17 tracheal tube aspiration samples (20%), 32 throat cultures (38%), 2 sputum samples (2.5%), and 2 abscess drain cultures (2.5%). High-level resistance to cefotaxime was detected in 92%, and all of isolates were susceptible to colistin. Biofilm formation was seen in 62 (75%) isolates. Strong biofilm formation was observed in 17 (20%) strains. A significant correlation was seen between biofilm formation and antibiotic resistance ( P value <0.05). Conclusion. Our findings emphasize the need for proper diagnosis, control, and treatment of infections caused by K. pneumoniae especially in respiratory tract infections due to the strong biofilm formation and high antibiotic resistance in these strains.


Author(s):  
Nasrin Bahmani ◽  
Noshin Abdolmaleki ◽  
Afshin Bahmani

Background and Objectives: Urinary tract infection (UTI) is one of the most frequent infectious diseases which is caused by Gram-negative bacteria especially Escherichia coli. Multiple resistance to antimicrobial agents are increasing quickly in E. coli isolates and may complicate therapeutic strategies for UTI. The propose of this study was to determine the antibiotic resistance patterns and the multidrug-resistance (MDR) phenotypes in uropathogenic E. coli (UPEC). Materials and Methods: A total of 153 UPEC isolates were collected from both hospitalized patients (95 isolates) and outpatients (58 isolates) from March to October 2018. In order to determine the MDR among UPEC isolates, we have tested 15 antimicrobial agents on Muller Hinton agar by the disk diffusion method. Results: The percentage of MDR isolates (resistant to at least three drug classes such as fluoroquinolones, penicillins and cephalosporins) was 55.5% in the hospitalized patients and the outpatients. Antibiotic resistance to ampicillin, ceftazidime, nalidixic acid and trimethoprim/ sulfamethoxazole was higher than 60%. Meropenem, Imipenem and norfloxacin indicated markedly greater activity (93.3%, 80% and 85.6%, respectively) than other antimicrobial agents. Conclusions: Urinary tract infection due to MDR E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics, so, empirical antibiotic treatment should be reviewed periodically at local studies.


2019 ◽  
Vol 63 (3) ◽  
pp. 1-8
Author(s):  
M. Sciberras ◽  
M. Pipová ◽  
I. Regecová ◽  
P. Jevinová ◽  
S. Demjanová

Abstract The purpose of this study was to detect the antibiotic resistance of forty-one Escherichia coli isolates from the intestinal contents of slaughtered broiler chickens using the disk diffusion method according to Kirby-Bauer. Mueller-Hinton agar plates were inoculated with 0.1 ml overnight broth cultures of individual E. coli isolates and the disks with the following concentrations of antibiotics were applied onto them: ampicillin (10 μg), cefotaxime (30 μg), gentamicin (10 μg), streptomycin (10 μg), azithromycin (15 μg), tetracycline (30 μg), ciprofloxacin (30 μg) and levofloxacin (3 μg). After the incubation at 37 °C for 16—18 hours, the inhibition zones were measured and interpreted in accordance with the Clinical and Laboratory Standard Institute (CLSI) zone diameter breakpoints. Almost all E. coli isolates showed resistance to tetracycline (92.68 %), most of them were resistant to gentamicin (75.61 %) and levofloxacine (70.73 %). Phenotypic resistance to tetracycline was further confirmed with the help of the Polymerase Chain Reaction (PCR) procedure focused on the presence of specific tet(A) and tet(B) genes. These genes were detected in all 41 E. coli isolates. On the contrary, E. coli isolates were highly susceptible to both azithromycin and streptomycin. In conclusion, the study highlighted the role of commensal E. coli bacteria isolated from the intestines of broiler chickens as an important reservoir of tetracycline resistance genes.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Reza Talebiyan ◽  
Mehdi Kheradmand ◽  
Faham Khamesipour ◽  
Mohammad Rabiee-Faradonbeh

Antimicrobial agents are used extremely in order to reduce the great losses caused byEscherichia coliinfections in poultry industry. In this study, 318 pathogenicEscherichia coli(APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistantE. coliamong diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances.


2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


Sign in / Sign up

Export Citation Format

Share Document