scholarly journals Investigation of Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Klebsiella pneumoniae

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kiana Karimi ◽  
Omid Zarei ◽  
Parinaz Sedighi ◽  
Mohammad Taheri ◽  
Amin Doosti-Irani ◽  
...  

Aim. Klebsiella pneumoniae (K. pneumoniae) is an encapsulated Gram-negative bacterium that can lead to 14–20% of nosocomial infections. The ability of biofilm formation in this bacterium decreases the host immune response and antibiotic efficacy. This may impose a huge impact on patients and healthcare settings. This study aimed to evaluate the antibiotic resistance pattern and biofilm formation in K. pneumoniae strains isolated from two major Hamadan hospitals, west of Iran. Methods. A total of 83 K. pneumoniae strains were isolated from clinical samples of patients in different wards of Hamadan hospitals from September 2018 to March 2019. Determination of antimicrobial susceptibility was performed using the disk diffusion method. Biofilm formation was evaluated by the crystal violet method. Data were analyzed by the SPSS software and chi-square test. Results. The results showed that clinical samples included 18 urinary tract samples (22%), 6 wound samples (7%), 6 blood samples (7%), 17 tracheal tube aspiration samples (20%), 32 throat cultures (38%), 2 sputum samples (2.5%), and 2 abscess drain cultures (2.5%). High-level resistance to cefotaxime was detected in 92%, and all of isolates were susceptible to colistin. Biofilm formation was seen in 62 (75%) isolates. Strong biofilm formation was observed in 17 (20%) strains. A significant correlation was seen between biofilm formation and antibiotic resistance ( P value <0.05). Conclusion. Our findings emphasize the need for proper diagnosis, control, and treatment of infections caused by K. pneumoniae especially in respiratory tract infections due to the strong biofilm formation and high antibiotic resistance in these strains.

2020 ◽  
Vol 29 (3) ◽  
pp. 137-144
Author(s):  
Asmaa M. Elbrolosy ◽  
Naira A. Eissa ◽  
Nahed A. Al-Rajhy ◽  
Esraa El-Sayed A. El-Mahdy ◽  
Rasha G. Mostafa

Background: Klebsiella pneumoniae (K. pneumoniae) is a common pathogen involved in a diverse array of life-threatening infections. Increasing frequent acquisition of antibiotic resistance by K. pneumoniae has given rise to multidrug-resistant pathogen mostly at the hospital level. Objectives: To assess the prevalence and antibiotic resistance pattern of the clinical K. pneumoniae isolates at Menoufia University Hospitals (MUHs) as well as to explore the role of mrkD gene as a regulator of biofilm formation. Methodology: A total of 340 different clinical samples were obtained from 270 patients who were admitted to MUHs and those from Outpatient clinics during the period from April 2018 to September 2019. 84 K. pneumoniae isolates were identified by the standard microbiological methods and vitek-2 system. The antimicrobial resistance pattern was determined by disk diffusion method. The biofilm-forming ability of all K. pneumoniae isolates was demonstrated phenotypically by the modified Congo red agar method (MCRA) and PCR assay verified the presence of mrkD gene as a genetic determinant of biofilm formation. Results: Klebsiella spp. represented 34.7% of the collected isolates and the predominant spp. was K. pneumoniae (91.3%). The highest resistance rates were for ceftriaxone (69%) followed by aztreonam (67.9%), 66.7% for each of piperacillin and ceftazidime, while the least resistance rate was for fosfomycin (8.3%). Biofilm production was detected among 83.3% of the isolates by MCRA method. A highly significant statistical difference was noted between biofilm- and non- biofilm - producing K. pneumoniae isolates regarding resistance to cefepieme and amikacin (P <0.001) and similarly regarding resistance to aztreonam, imipenem, meropenem, ertapenem and tobramycin (P<0.05). Conventional PCR assay showed that, 92% of the isolates harbored mrkD gene with a highly significant association with biofilm formation. Conclusion: The increasing prevalence and remarkable ability to acquire antibiotic resistance among K. pneumoniae isolates together with biofilm formation should alert even more regarding the hazard of this pathogen in hospital settings.


2019 ◽  
Vol 13 (S11) ◽  
Author(s):  
Hera Nirwati ◽  
Kian Sinanjung ◽  
Fahrina Fahrunissa ◽  
Fernando Wijaya ◽  
Sarastia Napitupulu ◽  
...  

Abstract Background Klebsiella pneumoniae (K. pneumoniae) is a common cause of health-care associated infections (HAIs) and has high levels of antibiotic resistance. These bacteria are well-known for their ability to produce biofilm. The purpose of this study was to identify the antibiotic resistance pattern and biofilm-producing capacity of K. pneumoniae isolated from clinical samples in a tertiary care hospital in Klaten, Indonesia. Methods K. pneumoniae was isolated from inpatients in Soeradji Tirtonegoro Hospital Klaten from June 2017 to May 2018. Identification of K. pneumoniae isolate was done by analyzing colony morphology, microscopic examination, and by performing biochemical testing. Testing of antibiotics susceptibility and biofilm-producing capacity used the Kirby-Bauer disk diffusion method and adherence quantitative assays, respectively. Results A total of 167 (17.36%) K. pneumoniae isolates were isolated from 962 total clinical bacterial isolates during the study. Most of them were collected from patients aged more than 60 years old and were mainly obtained from respiratory specimens (51.50%). Most of K. pneumoniae isolates were extensively resistant to antibiotics. A more favorable profile was found only towards meropenem, amikacin, and piperacillin-tazobactam, showing 1.20%; 4.79% and 10.53% of resistance, respectively. The overall proportion of multidrug-resistant K. pneumoniae isolates was 54.49%. In addition, 148 (85.63%) isolates were biofilm producers, with 45 (26.95%) isolates as strong, 48 (28.74%) isolates as moderate, and 50 (29.94%) isolates as weak biofilm producers. Conclusion Most of the K. pneumoniae isolates demonstrated resistance to a wide range of antibiotics and are biofilm producers.


2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Naeimeh Sadat Hashemi ◽  
Meysam Mojiri ◽  
Parivash Yazdani Kachouyi ◽  
Shiva Eskandari ◽  
Mehrsa Mohammadian ◽  
...  

Pseudomonas aeruginosa is one of the most important opportunistic pathogens responsible for various types of hospital infections. High prevalence of antibiotic resistance in P. aeruginosa strains of human clinical samples cause more severe diseases for a longer period of time. The current research was done in order to study the distribution of blaIMP-1 gene among the imipenem-resistant P. aeruginosa strains isolated from burn and urinary tract infections of hospitalized patients. Two-hundred and forty-three P. aeruginosa isolates recovered from the cases of burn and urinary tract infections of inpatients and outpatients were analysis for antibiotic resistance pattern using the disk diffusion method. Then, imipenem-resistant isolates were further analyzed for distribution of blaIMP-1 gene using the PCR. Of 243 P. aeruginosa isolates, 146 strains (60.08%) were taken from outpatients and 97 strains (39.91%) were taken from inpatients. P. aeruginosa isolates harbored the highest levels of resistance against streptomycin (100%), nalidixic acid (100%), aztreonam (100%), cotrimoxazole (95.47%), ciprofloxacin (88.47%), cefotaxime (84.36%) and gentamycin (83.95%). Inpatients had a relatively higher levels of antibiotic resistance. One-hundred and twenty-one out of 126 (96.03%) imipenem-resistant P. aeruginosa isolates harbored the blaIMP-1 gene. Inpatients also had a relatively higher prevalence of blaIMP-1 gene. High prevalence of blaIMP-1 gene and also imipenemresistant P. aeruginosa are important public health issue. Clinical laboratories should consider the detection of the blaIMP-1 gene among the P. aeruginosa isolates of clinical samples.


2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


2020 ◽  
pp. 517-527
Author(s):  
Sarab Murad Kadum

A total of 157 clinical samples were collected from different clinical specimens (urine, sputum, blood, swabs, and cannula) from several hospitals in Iraq. Among the samples, 51 isolates (32.48%) of Klebsiella pneumoniae were identified according to morphologicaland cultural characteristics as well as the Enterosystem 18R test. Higher numbers of K. pneumoniae isolates were observed in urine samples (26, 52%) than the other samples, and in females (70.6%) than males (29.4%) (female: male ratio of about 2.4:1). Antibiotic susceptibility of K. pneumoniae against 12 commonly used antibiotics was determined through the disc-diffusion method. The results revealed a higher resistance rate in 51 isolates (100%) against Cephalexin, followed by Ceftazidime (50, 98%), while the lowest resistance rate (24, 47%) was against each of Imipenem and Meropenem. Also, the investigation of the minimum inhibitory concentration (MIC) of Colistin using E-test (strips) demonstrated that 33 isolates were resistance, as compared to 31 using the disk diffusion assay. DNA was extracted from K. pneumoniae isolates and molecularly tested using polymerase chain technique (PCR) with a specific primer and 108 bp product to detect the rpoB gene that represents this bacteria . Also, all of the 51 isolates of K. pneumoniae identified by the rpoB gene were detected for the expression of the Colistin drug resistance gene mgr-B , which was amplified (347 bp) using a specific primer. Colistin resistance gene mgr-B was amplified and sequenced from the twenty isolates. Only 6 isolates appeared with a single nucleotide substitution; G instead A, A instead G, C instead G and G instead C. Also, this study tested biofilm formation from K. pneumoniae isolates , using the microtiter plate method, in association with Colistin and Carbapenem resistant. The Colistin and Carbapenem resistance pattern was compared to the ability of biofilm-formation as weak formation versus strong and also, Multi-drug resistant isolates were more common among weak versus strong biofilm formers.


2020 ◽  
Author(s):  
Shadi Shadkam ◽  
Hamid Reza Goli ◽  
Bahman Mirzaei ◽  
Mehrdad Gholami ◽  
Mohammad Ahanjan

Abstract BackgroundKlebsiella pneumoniae (K. pneumoniae) is a common cause of nosocomial infections. Antibiotic resistance and ability to form biofilm, as two key virulence factors of K. pneumoniae, involved in persistent of the infections. The purpose of this study is to investigate the correlation between antimicrobial resistance and biofilm formation capability among K. pneumoniae strains isolated from hospitalized patients in Iran.MethodsOver a 10-month period, a total of 100 non-duplicate K. pneumoniae strains were collected. Antibiotic susceptibility test was determined by Kirby-Bauer disk diffusion method according to CLSI. Biofilm formation was assessed by tissue culture plate method. Finally, polymerase chain reaction was conducted to detect four families of carbapenemase: blaIMP, blaVIM, blaNDM, blaOXA-48, biofilm formation associated genes; treC, wza, luxS and K. pneumoniae confirming gene; rpoB.ResultsMost of the isolates were resistant to co-trimoxazole (52%), cefotaxime (51%), cefepime (43%), and ceftriaxone (43%). Among all the 100 isolates, 67 were multidrug-resistant (MDR), and 11 were extensively drug-resistant (XDR). The prevalence of the blaVIM, blaIMP, blaNDM, and blaOXA-48 genes were 7%, 11%, 5%, and 28%, respectively. Among these isolates, 25% formed fully established biofilms, 19% were categorized as moderately biofilm-producing, 31% formed weak biofilms, and 25% were non-biofilm-producers. Molecular distribution of biofilm formation genes revealed that 98%, 96%, and 34% of the isolates carried luxS, treC, and wza genes, respectively. ConclusionThe rise of antibiotic resistance among biofilm-producer strains, demonstrating a serious alarm about limited treatment options in hospital setting. Also, fundamental actions and introduction of novel strategies for controlling of K. pneumoniae biofilm-related infections is essential.


Author(s):  
Shadi Shadkam ◽  
Hamid Reza Goli ◽  
Bahman Mirzaei ◽  
Mehrdad Gholami ◽  
Mohammad Ahanjan

Abstract Background Klebsiella pneumoniae is a common cause of nosocomial infections. Antibiotic resistance and ability to form biofilm, as two key virulence factors of K. pneumoniae, are involved in the persistence of infections. The purpose of this study was to investigate the correlation between antimicrobial resistance and biofilm formation capability among K. pneumoniae strains isolated from hospitalized patients in Iran. Methods Over a 10-month period, a total of 100 non-duplicate K. pneumoniae strains were collected. Antibiotic susceptibility was determined by Kirby–Bauer disk diffusion method according to CLSI. Biofilm production was assessed by tissue culture plate method. Finally, polymerase chain reaction was conducted to detect four families of carbapenemase: blaIMP, blaVIM, blaNDM, blaOXA−48; biofilm formation associated genes: treC, wza, luxS; and K. pneumoniae confirming gene: rpoB. Results Most of the isolates were resistant to trimethoprim-sulfamethoxazole (52 %), cefotaxime (51 %), cefepime (43 %), and ceftriaxone (43 %). Among all the 100 isolates, 67 were multidrug-resistant (MDR), and 11 were extensively drug-resistant (XDR). The prevalence of the blaVIM, blaIMP, blaNDM, and blaOXA−48 genes were 7 , 11 , 5 , and 28 %, respectively. The results of biofilm formation in the tissue culture plate assay indicated that 75 (75 %) strains could produce biofilm and only 25 (25 %) isolates were not able to form biofilm. Among these isolates, 25 % formed fully established biofilms, 19 % were categorized as moderately biofilm-producing, 31 % formed weak biofilms, and 25 % were non-biofilm-producers. The antimicrobial resistance among biofilm former strains was found to be significantly higher than that of non-biofilm former strains (p < 0.05). Molecular distribution of biofilm formation genes revealed that 98 , 96 , and 34 % of the isolates carried luxS, treC, and wza genes, respectively. Conclusions The rise of antibiotic resistance among biofilm-producer strains demonstrates a serious concern about limited treatment options in the hospital settings. All of the data suggest that fundamental actions and introduction of novel strategies for controlling of K. pneumoniae biofilm-related infections is essential.


2019 ◽  
pp. 1423-1429
Author(s):  
Idowu Jesulayomi Adeosun ◽  
Kolawole Elijah Oladipo ◽  
Oluwatosin Akinola Ajibade ◽  
Titilayo Mabel Olotu ◽  
Abayomi A Oladipo ◽  
...  

Klebsiella pneumoniae is a pathogen of the Enterobacteriaceae family that causes healthcare-associated infections and has recently emerged as one of the most antibiotic-resistant organisms responsible for outbreaks in both community and healthcare settings. The aim of this study is to determine the resistance pattern of Klebsiella pneumoniae isolated from selected tertiary hospitals in Osun state, Nigeria. A total of 62 Klebsiella pneumoniae isolates were obtained from 1056 samples of urine, wound swab, ear swab, eye swab and other collection sites that were routinely submitted to the diagnostic laboratories of the selected tertiaryhospitals. Susceptibility to twelve (12) antibiotics (Oxoid) was determined using the Kirby Bauer disk diffusion method for the 62 isolates. Rate of resistance to carbapenems, fluoroquinolones, polymyxins, monobactams, cephalosporins, penicillin and phosphonic acid derivative are 29.03%, 47.84%, 29.03%, 46.77%, 50.80%, 93.55%, and 37.10% respectively. The isolates were mostly susceptible to carbapenems, especially, Imipenem with 74.19%. Highest resistance was to Penicillin (93.55%). The multiple antibiotic resistance (MAR) index revealed that 52 (83.87%) out of 62 isolates were multi-drug resistant. Increase in antibiotic resistance continues to be a problem amidst patients infected with Klebsiella pneumoniae which can be most likely attributed to increase in antibiotic misapplication, misuse and abuse which is most prevalent among youths. It is therefore of utmost importance that consistent monitoring of antibiotic resistance be done as it will assist in the appropriate selection of empiric antibiotic treatment in the proper setting.


2020 ◽  
Vol 5 (4) ◽  
pp. 125-130
Author(s):  
Aidin Azizpour ◽  
Ciamak Ghazaei

Introduction: Colibacillosis is one of the most important bacterial diseases of birds that is caused by Escherichia coli. This disease causes considerable economic damage to the poultry industry every year. Various antimicrobial agents are used to reduce the damage caused by this infection. But in recent decades, the increased use of antibiotics has led to the development of resistant genes and, consequently increasing antibiotic resistance of bacteria, leading to a decrease in the efficacy of antibiotics. The purpose of this study was to determine the susceptibility and drug resistance of 178 isolates of 40 chicken flocks in Ardabil province northwest of Iran. Methods: Five carcasses were randomly selected from each flocks with colibacillosis and sampled from liver and heart using sterile swabs. After culture and isolation, colonies were identified by biochemical and serological methods. Antibiotic resistance of all isolates to 19 antibiotics was determined using disk diffusion method based on CLSI guidelines. Results: Of 200 samples, 178 (89%) were isolated, and 22 (11%) did not grow. In this study the highest antibiotic resistance was observed against flumequine (98.31%), nalidixic acid (97.25%), tylosin (97.20%), oxytetracycline (97.20%), chlortetracycline (95.50%), difloxacin (89.32%), doxycycline (81.47%), enrofloxacin (77.53%), sulfamethoxazole + trimethoprim (71.91%), and the lowest antibiotic resistance was recorded for Linco-Spectin (36.52%), chloramphenicol (22.47%), gentamycin (7.30%), fuzbac (5.05%) and ceftriaxone (3.93%). All isolates were highly sensitive to ceftazidime. Conclusion: The results of this study showed a high level of resistance to antibiotics commonly used in poultry industry, which is probably due to improper use of antibiotics in poultries.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Sign in / Sign up

Export Citation Format

Share Document