scholarly journals Randomized approach to determine dynamic strength of ice

Author(s):  
Nikolay Granichin ◽  
Grigory Volkov ◽  
Yuri Petrov ◽  
Marina Volkova

The randomized method of Sign-Perturbed Sums (SPS) is applied within the framework of the incubation time approach to evaluate the dynamic strength of ice. The experimental data of [Carney et al., 2006; Wu and Prakash, 2015; Saletti et al., 2019] is analysed in order to estimate strength parameters of ice and describe the observed strain-rate sensitivity curves. The independence of incubation time value on the ice temperature is established in contrast with the significant dependency of the critical stress parameter. The obtained confidence interval of the spalled ice is in good correspondence with the scatter observed experimentally.

2012 ◽  
Vol 9 (1) ◽  
pp. 22-25
Author(s):  
S.V. Amel’kin ◽  
D.Ye. Igoshin

A self-assembly model for porous hydrate structures is proposed, which takes into account the sequence of basic physical processes: hydrate growth on the surface of the aqueous solution, formation of islet structure, capillary flow, separation and transfer of secondary crystallization nuclei to the meniscus. The model was studied within the cellular automata method. A good correspondence between the results of the simulation and the experimental data is obtained.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 134
Author(s):  
Ivan Smirnov ◽  
Natalia Mikhailova

Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Grzegorz Ludwik Golewski ◽  
Damian Marek Gil

This paper presents the results of the fracture toughness of concretes containing two mineral additives. During the tests, the method of loading the specimens according to Mode I fracture was used. The research included an evaluation of mechanical parameters of concrete containing noncondensed silica fume (SF) in an amount of 10% and siliceous fly ash (FA) in the following amounts: 0%, 10% and 20%. The experiments were carried out on mature specimens, i.e., after 28 days of curing and specimens at an early age, i.e., after 3 and 7 days of curing. In the course of experiments, the effect of adding SF to the value of the critical stress intensity factor—KIcS in FA concretes in different periods of curing were evaluated. In addition, the basic strength parameters of concrete composites, i.e., compressive strength—fcm and splitting tensile strength—fctm, were measured. A novelty in the presented research is the evaluation of the fracture toughness of concretes with two mineral additives, assessed at an early age. During the tests, the structures of all composites and the nature of macroscopic crack propagation were also assessed. A modern and useful digital image correlation (DIC) technique was used to assess macroscopic cracks. Based on the conducted research, it was found the application of SF to FA concretes contributes to a significant increase in the fracture toughness of these materials at an early age. Moreover, on the basis of the obtained test results, it was found that the values of the critical stress intensity factor of analyzed concretes were convergent qualitatively with their strength parameters. It also has been demonstrated that in the first 28 days of concrete curing, the preferred solution is to replace cement with SF in the amount of 10% or to use a cement binder substitution with a combination of additives in proportions 10% SF + 10% FA. On the other hand, the composition of mineral additives in proportions 10% SF + 20% FA has a negative effect on the fracture mechanics parameters of concretes at an early age. Based on the analysis of the results of microstructural tests and the evaluation of the propagation of macroscopic cracks, it was established that along with the substitution of the cement binder with the combination of mineral additives, the composition of the cement matrix in these composites changes, which implies a different, i.e., quasi-plastic, behavior in the process of damage and destruction of the material.


2012 ◽  
Vol 66 (8) ◽  
pp. 1607-1613 ◽  
Author(s):  
L. Capelli ◽  
S. Sironi ◽  
R. Barczak ◽  
M. Il Grande ◽  
R. Del Rosso

The aim of this paper is the study and the validation of a method for odor sampling on solid area sources. This aim is achieved by considering a suitable theoretical model that accounts for all the variables involved in the volatilization process of odorous compounds from solids into the atmosphere. The simulation of the emission of odors from a solid surface was achieved by designing a suitable experimental setup and a specific wind tunnel for laboratory tests. The results of the tests show a good correspondence between the theoretical data derived from the adopted model and the experimental data. The verification of the possibility of describing the wind tunnel functioning with a theoretical volatilization model proves the applicability of this device for sampling on solid area sources.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
M. B. Ruggles-Wrenn ◽  
O. Ozmen

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at 316°C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain-controlled loading were examined. Positive, nonlinear strain rate sensitivity is observed in monotonic loading. The material exhibits nonlinear, “curved” stress-strain behavior during unloading at all strain rates. The recovery of strain at zero stress is strongly influenced by the prior strain rate. The prior strain rate also has a profound effect on relaxation behavior. Likewise, creep response is significantly influenced by the prior strain rate. The experimental data are modeled with the viscoplasticity theory based on overstress (VBO). The comparison with experimental data demonstrates that the VBO successfully predicts the inelastic deformation behavior of the PMR-15 polymer under various test histories at 316°C.


2006 ◽  
Vol 326-328 ◽  
pp. 1661-1664
Author(s):  
Gao Lin ◽  
Dong Ming Yan

Understanding the behavior of concrete under dynamic loading conditions is an issue of great significance in earthquake engineering. Moisture content has an important influence on the strain-rate effect of concrete. In this study, both tensile and compressive experiments were carried out to investigate the rate-dependent behavior of concrete. Tensile experiments of dumbbell-shaped specimens were conducted on a MTS810 testing machine and compressive tests of cubic specimens were performed on a servo-hydraulic testing machine designed and manufactured at Dalian University of Technology, China. The strain rate varied in a wide range. The analytical formulations between the dynamic strength and strain rate were proposed for both compressive tests and tensile tests. It was concluded from the results that with the increasing strain rate, strengths of specimens with both moisture contents tended to increase and the increase seemed to be more remarkable for the saturated specimens; based on the experimental observation, a better explanation for the dynamic behavior is presented.


2014 ◽  
Vol 659 ◽  
pp. 57-62 ◽  
Author(s):  
Vlad Carlescu ◽  
Gheorghe Prisacaru ◽  
Dumitru Olaru

Modeling large nonlinear elastic deformation of elastomers is an important issue for developing new materials. Particularly, this is very promising for design and performance analysis of dielectric elastomers (DEs). These “smart materials” are capable of responding to an external electric field by displaying significant change in shape and size. In this paper, finite element method (FEM) was used to simulate the mechanical behavior of soft elastomers on uniaxial tension. Experimental data from uniaxial tensile tests were used in order to calibrate hyperelastic constitutive models of the material behavior. The constitutive model parameters were evaluated in ABAQUS/CAE. The 3D-model simulation results of a dumbbell shaped specimen at uniaxial tension shows very good correspondence with experimental data.


Sign in / Sign up

Export Citation Format

Share Document