scholarly journals PENGARUH PENAMBAHAN PLASTICIER GLISEROL TERHADAP KARAKTERISTIK HIDROGEL KITOSAN-GLUTARALDEHID UNTUK APLIKASI PENUTUP LUKA

2014 ◽  
Vol 14 (1) ◽  
pp. 18 ◽  
Author(s):  
Djony Izak Rudyardjo

PENGARUH PENAMBAHAN PLASTICIER GLISEROL TERHADAP KARAKTERISTIK HIDROGEL KITOSAN-GLUTARALDEHID UNTUK APLIKASI PENUTUP LUKA ABSTRAK Telah dilakukan penelitian untuk mengetahui pengaruh penambahan plasticizer gliserol terhadap karakteristik hidrogel kitosan-glutaraldehid untuk aplikasi penutup luka. Penambahan gliserol bertujuan agar hidrogel kitosan-glutaraldehid lebih fleksibel dan memiliki sifat mekanik yang baik sehingga dapat diaplikasikan sebagai penutup luka sesuai dengan standar yang ada. Pembuatan hidrogel dilakukan dengan cara mencampurkan kitosan yang dilarutkan dalam 1% asam asetat dengan 1% larutan glutaraldehid pada perbandingan 50 : 3 (v/v) dan ditambahkan gliserol dengan variasi volume 1 ml – 4 ml. Konsentrasi gliserol yang digunakan tidak lebih dari 2%. Berdasarkan penelitian yang telah dilakukan, penambahan gliserol menyebabkan ketebalan, kuat tarik, dan kemampuan mengabsorbsi cairan hidrogel menurun; elongasi dan ketahanan terhadap air  hidrogel meningkat; serta struktur hidrogel menjadi lebih halus. Berdasarkan hasil uji sifat mekanik, hasil terbaik ditunjukkan oleh hidrogel kitosan-glutaraldehid-gliserol dengan penambahan gliserol 2% sebanyak 2 ml, yang memiliki nilai kuat tarik sebesar 14,34 ± 1,90 MPa dan elongasi sebesar 2,40 ± 0,91% yang memenuhi standar sifat mekanik kulit manusia. Struktur permukaan hidrogel tersebut halus, homogen, memiliki ketahanan terhadap air sebesar 24,78 ± 6,57% serta mampu mengabsorbsi cairan lebih dari 99,9% yaitu sebesar 149,65 ± 22,46% yang merupakan karakteristik penting hidrogel. Jadi, dapat disimpulkan bahwa hidrogel kitosan-glutaraldehid-gliserol dengan penambahan gliserol 2% sebanyak 2 ml dapat diaplikasikan sebagai penutup luka. Kata kunci: Glutaraldehid, Gliserol, Hidrogel, Kitosan, Penutup Luka, Plasticizer   THE EFFECT OF ADDITION GLYCEROL AS PLASTICIER TO THE CHARACTERISTICS OF CHITOSAN-GLUTARALDEHYDE HIDROGEL FOR WOUND DRESSING APPLICATION ABSTRACT The research had been done to determine the effect of addition glycerol as plasticizer to the characteristics of chitosan-glutaraldehyde hydrogel for wound dressing application. The addition of glycerol was served to increase flexibility and improve the mechanical properties of chitosan-glutaraldehyde hydrogel that can be applied as a wound dressing accordance with existing standards. Preparation of hydrogel was made by mixing chitosan dissolved in 1% acetic acid with 1% glutaraldehyde solution with ratio 50 : 3 (v/v) and added by glycerol with variation of 1 ml - 4 ml. The glycerol concentration used no more than 2%. Based on the research that had been done, the addition of glycerol caused thickness, tensile strength, and the absorption ability of hydrogel was decreased; elongation and water resistance of hydrogel increased; and the surface structure of hydrogel is more smooth. Based on the result of mechanical properties, the best characteristics of chitosan-glutaraldehyde-glycerol hydrogel is shown with the addition of 2 ml glycerol 2% composition which has a value of tensile strength of 14,34 ± 1,90 MPa and elongation at 2,40 ± 0,91 % that meet the standards of the mechanical properties of human skin. The structure of that hydrogel surface is smooth, homogeneous, has a water resistance of 24,78 ± 6,57%, and is able to absorb liquid more than 99,9% in the amount of 149,65 ± 22,46 % which is an important characteristic of the hydrogel. So, the chitosan-glutaraldehyde-glycerol hydrogel with the addition of 2 ml glycerol 2% can be applied as a wound dressing. Keywords : Chitosan, Glutaraldehyde, Glyserol, Hydrogel, Plasticizer, Wound Dressing

2019 ◽  
Vol 15 (3) ◽  
pp. 357
Author(s):  
Maria Natalia ◽  
Wirananditami Hazrifawati ◽  
Doni Rahmat Wicakso

Biodegradable plastic (bioplastics) is a polymer that can be degraded and made from renewable sources, including cellulose obtained from pineapple leaves. The purpose of this study is to determine the mechanical properties of bioplastics from cellulose, determine the optimum conditions based on the concentration of chitosan variations on cellulose solution and the addition of glycerol plasticizers to the mechanical properties of biodegradable plastic produced. This study begins with the manufacture of cellulose from pineapple leaves through a process of delignification and bleaching and then making biodegradable plastic 1% cellulose raw material with a variation of chitosan with a variation of 1%; 2%; 3% and the addition of plasticizer glycerol 1%, 2% and 3% (v/v). The results obtained will be observed by tensile tests, SEM tests, swelling tests, and biodegradation. The results obtained in the morphological test with the SEM test showed that cellulose was not evenly distributed. The tensile strength test for the addition of chitosan showed that the concentration of 3% had the highest tensile strength value of 11.8 MPa while the tensile strength of the addition of glycerol showed that the concentration of 3% had the highest tensile strength value of 3.6 MPa. The swelling test shows that glycerol concentration influences biodegradable plastic water resistance and glycerol 3% has the highest percentage of water resistance, 16.6%. In the biodegradable plastic degradation test with 3% glycerol experiencing the fastest degradation, this shows that glycerol has an effect on biodegradable plastic degradation


2020 ◽  
Vol 4 (1) ◽  
pp. 53
Author(s):  
Fadhil Muhammad Tarmidzi ◽  
Inggit Kresna Maharsih ◽  
Tina Raihatul Jannah ◽  
Cici Sari Wahyuni

Teknik pembalutan luka saat ini menerapkan metode perawatan luka modern dengan cara mempertahankan isolasi lingkungan luka dalam keadaan tertutup dan lembab. Ada beberapa jenis pembalut luka yang telah dikembangkan, salah satunya hidrogel. Hidrogel merupakan pembalut luka berbentuk lembaran yang memiliki kemampuan menyerap cairan luka dan memiliki stabilitas yang baik pada pH asam sehingga dapat digunakan untuk pengobatan luka bakar. Dalam penelitian ini, hidrogel dibuat menggunakan polimer alami seperti pektin dan gelatin. Kedua bahan tersebut dikombinasikan menggunakan metode ikatan silang dengan penambahan asam sitrat sebagai agen pengikat silang. Penambahan asam sitrat memberikan pengaruh terhadap karakteristik material hidrogel yang dihasilkan, sehingga diperlukan jumlah yang tepat agar didapatkan hidrogel dengan properti material yang baik. Hidrogel juga ditambahkan zat aktif berupa flavonoid pada ekstrak kulit buah naga agar dapat digunakan sebagai pembalut luka untuk menyembuhkan luka bakar. Dari hasil penelitian, hidrogel dengan konsentrasi asam sitrat 4% (Hidrogel CA 4%) menghasilkan nilai swelling, tensile strength, dan elongation tertinggi sebesar 890%, 0,05 Mpa, dan 200%. Hasil properti mekanik dari Hidrogel CA 4% ini dibuktikan dengan uji FTIR yang telah dilakukan, yaitu munculnya gugus karbonil C=O sebagai hasil reaksi esterifikasi yang terjadi antara polimer dengan asam sitrat di daerah serapan 1733,9 cm-1.Wound dressing technique currently applies modern wound care methods by maintaining the environmental isolation of the wound in a closed and moist state. There are several types of wound dressing that have been developed, one of them is hydrogel. Hydrogel is sheet-shaped wound dressings which have the ability to absorb exudate and have good stability acidic pH that can be used for the treatment of burns. In this study, hydrogel were made using natural polymers such as pectin and gelatin. The two polymers were combined using crosslinking method with the addition of citric acid as a crosslinking agent. The addition of citric acid has affect on the characteristics of the hydrogel material produced, therefore the right amount is needed to obtain a hydrogel with good mechanical properties. Hydrogel also added by an active substance in the form of flavonoids from dragon fruit peel extract that can be used as a wound dressing to cure burns. This study resulting hydrogel with a concentration of 4% citric acid (Hydrogel CA 4%) produced highest value of swelling, tensile strength, and elongation are 890%, 0.05 Mpa, and 200%, repectively. The mechanical properties of Hydrogel CA 4% was proved by FTIR test that had been carried out, namely the presence of C=O carbonyl group as a result of the esterification reaction that occurred between the polymers and citric acid in the absorption area of 1733.9 cm-1.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


2011 ◽  
Vol 197-198 ◽  
pp. 1281-1284 ◽  
Author(s):  
Sui Lian Luo ◽  
Chao Dong Liu ◽  
Guo Fei Gong

In this paper three kind of water borne polyurethane are synthesized. FTIR identify the structure of 2-hydroxypropyl acrylate terminated water borne polyurethane with block PDMS. It is found that Si-WPUA has excellent water-resistance, good toughness, and good tensile strength. So, the work has been found the method which could improve water resistance and not decrease mechanical properties. It is hoped that the modified polyurethane could be used as coatings superior to the solvent-borne systems.


2018 ◽  
Vol 7 (1) ◽  
pp. 49-59
Author(s):  
Johan Budiman ◽  
Rodiana Nopianti ◽  
Shanti Dwita Lestari

This research studied the characteristics of bioplastic from large-leafed mangrove (Bruguiera gymnorrizha) starch. This research was arranged used Randomized Block Design (RBD) model, with different starch concentration (0.5%, 1%, 1.5% and 2%) as treatment. The parameters observed were mechanical properties (tensile strength and percent elongation), thickness, water uptake and biodegradation test. The result showed that the starch concentration was not significant, (P>0.05) affected tensile strength and water resistance. Different between treatments was observed as for elongation, thickness and biodegradation test significant (P<0.05). The results obtained from the bioplastic research of large-leafed mangrove starch for tensile strength ranged from 24.59 MPa – 32.91 MPa, percent elongation 2.93% – 4.88%, thickness 0.05 mm – 0,11 mm, water resistance 108.06% – 111.09% and biodegradation test with percent weight loss 17.91% – 54.40% with the highest degradation rate 18.13 – 3.62 mg /15 days burial. The best treatment was obtained by using 1,5% starch, 4 g chitosan and 15% glycerol or equal to starch : chitosan 1.5 g : 4 g and 0.9 mL glycerol.


2017 ◽  
Author(s):  
Arham Rusli

Appropriate concentration of base material and plasticizer is required to obtain good physical and mechanical properties of edible film for food packaging and preservation functions. The aim of this study was to obtain the best combination of the base material and plasticizer in the manufacture of agar films based on physical and mechanical properties. Results showed that the physical and mechanical properties of the agar edible film were affected by the agar and glycerol concentrations. Increasing agar concentrations resulted in the increase in the film thickness, tensile strength (TS), and elongation at break (EAB), but decreased the filmsolubility. While increasing glycerol concentration tended to increase the film thickness and solubility, but decrease the TS of the film. The best concentration combination of agar and glycerol in this study was 3 and 10%, respectively.


2020 ◽  
Vol 2 (1) ◽  
pp. 7-15
Author(s):  
Pada Mulia Raja

Polyurethane is a type of polymer made by reacting polyol (OH) groups with isocyanate (NCO) groups. The purpose of this study was to determine the mechanical properties of a mixture of polyol and toluene sources as well as by adding the composition of activated carbon of palm shell as a filler to determine the best results. The materials used in making composites are PPG (Polypropylene Glycol), TDI (Toluent DiIsocyanate) and Palm Oil Shell Activated Carbon. Palm shells are carbonated at 600 ◦C, then made into powder using a ball mill and then sieved with 110 mesh particle sieve and activated using 10% H2SO4. Furthermore Polyurethanes are made by mixing, PPG (Polypropylene Glycol), TDI (Toluent in Isocyanate) with a ratio of 60%: 40% and then added the activated carbon of palm oil shell as a filler with polyurethane: 95% active carbon (P1), 90 %: 10% (P2), 80%; 20% (P3), and 75%: 25% (P4), then the functional group (FT-IR) and mechanical properties testing consisted of tensile strength and elasticity values. The results of the characterization of amine (NH), methyl groups (C-H3), Acetyl groups (CN), carbonyl groups (C = O), isocyanate groups (N = C = O), and Aromatic Rings (C = C) . This can be concluded after the addition of activated carbon palm shell does not cause chemical reactions in the functional group. While the results of the characterization of the tensile strength of P0 to P1 with a value of 0.1966 MPa to 0.0317 MPa, then increased in the composition of 90 P2, P3, and P4 with values of 0.0985 MPa, 0.2318 MPa, 0.2981MPa, and finally occurred decrease again in the composition of P5. While the highest elasticity value on composites with a ratio of P4 is 0.05196 MPa, while the lowest elasticity value on the composition of P5 with a value of 0.0475 MPa.  


2017 ◽  
Vol 17 (3) ◽  
pp. 103-106 ◽  
Author(s):  
R. Pastirčák ◽  
J. Ščury ◽  
J. Moravec

Abstract The paper deals with the impact of technological parameters on the mechanical properties and microstructure in AlSi12 alloy using squeeze casting technology. The casting with crystallization under pressure was used, specifically direct squeeze casting method. The goal was to affect crystallization by pressure with a value 100 and 150 MPa. From the experiments we can conclude that operating pressure of 100 MPa is sufficient to influence the structural characteristics of the alloy AlSi12. The change in cooling rate influences the morphology of the silicon particles and intermetallic phases. A change of excluded needles to a rod-shaped geometries with significantly shorter length occurs when used gravity casting method. At a pressure of 100 MPa was increased of tensile strength on average of 20%. At a pressure of 150 MPa was increased of tensile strength on average of 30%. During the experiment it was also observed, that increasing difference between the casting temperature and the mold temperature leads to increase of mechanical properties.


1992 ◽  
Vol 266 ◽  
Author(s):  
Andrzej M. Krzysik ◽  
John A. Youngquist ◽  
James M. Muehl ◽  
Roger M. Rowell ◽  
Poo Chow ◽  
...  

AbstractDry-process hardboard represents a favorable option for recycling old newspaper fibers. However, dry-process boards tend to be less dimensionally stable than boards processed by other methods. Our objective was to determine the effects of various wood fiber (WF) to old newspaper (ONP) ratios (100:0, 50:50, and 0:100 WF/ONP) on the mechanical strength and water resistance of dry-process hardboards made from these fibers. Untreated and acetylated hardboards were made with 3 or 7 percent resin and 0.5 percent wax. Boards were tested for static bending and tensile strength properties and water resistance. As expected, increasing the resin level from 3 to 7 percent generally improved all measured properties. Acetylation substantially improved the water resistance of all boards; increasing the amount of ONP caused a corresponding deterioration in both mechanical properties and water resistance.


2019 ◽  
Vol 8 (3) ◽  
pp. 314-321
Author(s):  
Novita Thea Puspita Langit ◽  
Ali Ridlo ◽  
Subagiyo Subagiyo

Munculnya permasalahan lingkungan akibat plastik sintetik mendorong perlunya penelitian bahan kemasan mudah terurai (bioplastik). Salah satu bahan yang tersedia di alam dan berpotensi sebagai pembentuk bioplastik adalah alginat karena mampu membentuk gel. Bioplastik dari alginat memiliki sifat yang tidak fleksibel sehingga perlu ditambah gliserol sebagai plasticizer. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi alginat dari Sargassum sp. terhadap sifat fisik dan mekanik bioplastik dengan penambahan gliserol dan CaCl2. Materi penelitian ini adalah alginat hasil ekstraksi Sargassum sp. yang diambil dari Perairan Pantai Sundak, Gunung Kidul. Penelitian ini menggunakan metode eksperimental laboratoris yang terdiri dari empat perlakuan konsentrasi alginat (0,5%, 1%, 3% dan 5%)  dengan tiga pengulangan.  Sifat bioplastik yang diuji meliputi sifat fisik (ketebalan, ketahanan air, kehilangan berat) dan sifat mekanik (kuat tarik dan elongasi). Data yang diperoleh dianalisis menggunakan analisis sidik ragam (ANOVA). Hasil penelitian menunjukkan semakin tinggi konsentrasi alginat akan meningkatkan  ketebalan, ketahanan air dan kuat tarik bioplastik namun menurunkan elongasi dan kehilangan berat bioplastik. Konsentrasi alginat berpengaruh terhadap sifat fisik (ketebalan, ketahanan air, kehilangan berat) dan sifat mekanik (kuat tarik  kecuali elongasi), konsentrasi alginat terbaik yang memenuhi Japanese Industrial Standard dan standar SNI 7188.7:2016 adalah 0,5% The emergence of environmental problems due to synthetic plastics has led to the need to research biodegradable packaging materials (bioplastics). One of the ingredients available in nature and has the potential to form bioplastics is alginate because it is capable of forming gel. Bioplastic from alginate has inflexible properties so it needs to be added by glycerol as a plasticizer. This research aims to determine the effect of alginate concentration from Sargassum sp. on the physical and mechanical properties of bioplastics with the addition of glycerol and CaCl2. The method of this research is alginate from Sargassum sp. taken from Sundak Beach Waters, Gunung Kidul. This research used a laboratory experimental method consisting of four treatments of alginate concentration (0.5%, 1%, 3% and 5%) with three repetitions. The properties of the bioplastics tested included physical properties (thickness, water resistance, weight loss) and mechanical properties (tensile strength and elongation). Data obtained were analyzed using variance analysis (ANOVA). The results showed that the higher the concentration of alginate would increased thickness, water resistance and tensile strength of bioplastics but decreased the elongation and weight loss of bioplastics. The alginate concentration affects the physical properties (thickness, water resistance, weight loss) and mechanical properties (tensile strength and except elongation), the best alginate concentrations that meet the Japanese Industrial Standard and SNI 7188.7: 2016 are 0.5%


Sign in / Sign up

Export Citation Format

Share Document