scholarly journals Reproducibility of PetroOxy and its correlation with the Rancimat method

Paliva ◽  
2020 ◽  
pp. 93-97
Author(s):  
Karolína Jaklová ◽  
Aleš Vráblík

The current trend of reducing greenhouse gas emissions and carbon footprint as well as legislation requirements means an increase in the effort to replace fossil fuels by using renewable sources. One of the possibilities is usage of methyl esters (FAME or UCOME) as a bio-component in diesel fuel. Now the maximum FAME content in diesel is 7 vol% (according to the standard EN590 – B7). Increasing the proportion of FAME means a deterioration in oxidation stability. FAME is produced by the transesterification of the triglycerides present in vegetable oils. A major disadvantage of biodiesel (FAME) is ability to be slowly oxidised by air oxygen. Oxidation products may impair fuel properties, quality and engine performance. This is the reason why the oxidation stability of diesel and biodiesel is an important quality parameter. It could be detected using several methods, for example: Rancimat, PetroOxy or thermal techniques. The Rancimat method is intended for biodiesel and for diesel with a minimum 2 vol% content of FAME as mentioned in the standards EN 590 and EN 14214. The disadvantage is the time required for this method (more than 8 h for biodiesel and 20 h for diesel). The PetroOxy is shorter and its results can be converted to Rancimat stability. The set of 75 samples (40 samples of B7 and 35 samples of FAME) was measured using both mentioned methods. Three values of oxidation stability were determined for all of the analysed samples. In the first laboratory, oxidation stability of the samples was measured using both methods. In the second laboratory, oxidation stability was measured using only the PetroOxy. The PetroOxy results from both laboratories were compared with a high correlation value (R2 = 0,954). In the next step, outliers were removed from dataset. Experimental results of the Rancimat method were correlated with recalculated values of PetroOxy method from both laboratories. Correlation equation provided by the manufacturer of PetroOxy was used for recalculation of PetroOxy results to Rancimat results at first. Measured results were then compared with recalculated results. The largest difference in results was found in the B7 samples. Because of these differences the correlation equation between PetroOxy and Rancimat was optimized. Two different equation were made (for each laboratory). The recalculated oxidation stability results were compared with the primary results from Rancimat. The newly correlated values showed a higher degree of agreement with the experimental data than when the results were recalculated using the correlation equation provided by manufacturer. These optimized correlation equation have proven to be more suitable for industrial laboratories.

Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 337 ◽  
Author(s):  
Petr Zeman ◽  
Vladimír Hönig ◽  
Martin Kotek ◽  
Jan Táborský ◽  
Michal Obergruber ◽  
...  

Biofuels have become an integral part of everyday life in modern society. Bioethanol and fatty acid methyl esters are a common part of both the production of gasoline and diesel fuels. Also, pressure on replacing fossil fuels with bio-components is constantly growing. Waste vegetable fats can replace biodiesel. Hydrotreated vegetable oil (HVO) seems to be a better alternative. This fuel has a higher oxidation stability for storage purposes, a lower temperature of loss of filterability for the winter time, a lower boiling point for cold starts, and more. Viscosity, density, cold filter plugging point of fuel blend, and flash point have been measured to confirm that a fuel from HVO is so close to a fuel standard that it is possible to use it in engines without modification. The objective of this article is to show the properties of different fuels with and without HVO admixtures and to prove the suitability of using HVO compared to FAME. HVO can also be prepared from waste materials, and no major modifications of existing refinery facilities are required. No technology in either investment or engine adaptation of fuel oils is needed in fuel processing.


2018 ◽  
Vol 68 (12) ◽  
pp. 2771-2775
Author(s):  
Mihaela Gabriela Dumitru ◽  
Delia Nica Badea ◽  
Dragos Tutunea

Across the world the fossil fuels are depleting and countries are forced to find an alternative source to reduce green house gases and replace petroleum fuels. Depending of the raw material sources, vegetable oils, animal fats or algae, biodiesel offers a solution for a clean-burning diesel fuel. Watermelon (Citrullus lanatus L.) seed were collected and the oil was extracted. The oil was transformed into fatty acid methyl esters through a transesterification process and blended in various proportions with diesel fuel. The physico-chemical properties of fuels were determined. Results obtained showed that the biodiesel has a density (0.870 g/cm3), kinematic viscosity 40�C (3.1 mm2/s), flash point (128�C), saponification index (150 mgKOH/g), iodine index (108 mgI2/100g), peroxide index (3.7 mEqO2/Kg) and oxidation stability (6 hours) in the range of UE specifications. The engine tests were conducted on a Deutz F4L912 diesel engine, 51 kW, 4-stroke, air cooled, direct injection diesel engine. From the test performed was observed that the CO and HC emissions were reduced due to high content of oxygen in biodiesel blends.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1444
Author(s):  
Paweł Grabowski ◽  
Przemysław Jarosiński

The problem of microbial growth in fuels, especially biofuels, is a very important issue. Water is a necessity for microbial growth to occur. Unfortunately, it is very hard to exclude all water from fuel systems during daily operations, especially when biodiesel is added to the fuel mix. The aim of this work was to investigate the impact of ionizing radiation on selected properties of fatty acids methyl esters in order to evaluate the possibility of using irradiation techniques to sterilize biodiesel and its blends. Ionizing radiation influences the chemical composition of biodiesel samples containing especially unsaturated bonds. Irradiation was performed in a specially designed flow system. The tested parameters were compared with the normative values from the ISO 14214 standard. Density, kinematic viscosity, flash point, water content and cold filter plugging point as a macroscopic parameters do not change despite their irradiation with ionizing radiation. Change was observed in microscopic parameters as oxidation stability and esters content. During irradiation, Rapeseed Methyl Ester (RME) samples formed oxidation products, which lower the oxidative stability. It was observed that, for esters content, requirements of the standard could be met in the case of using very small doses. In the case of RME samples saturated with water, the changes in the ester concentration were smaller, but the resulting products decreased the oxidation stability. Sterilization fatty acids methyl esters (FAME) was observed with the use of e beam radiation is to apply very low doses (up to 2 kGy) in a flow system without adding water. Sterilization FAME saturated by water requires the use of higher doses of radiation, which adversely affects the oxidative stability.


Author(s):  
Milica Rankov-Sicar ◽  
Radoslav Micic ◽  
Milan Tomic ◽  
Natasa Djurisic-Mladenovic

This study evaluates six formulations in improving oxidation stability of different fatty acid methyl esters (MEs). Two MEs differed in the unsaturation levels as they were synthesized from different feedstocks: a blend of soybean and sunflower oils (SoSuME), and waste cooking oil (WCOME); they did not fulfill the requirements of the EN 14214 standard concerning the oxidation stability (~0.6 h) and some impurities. The third MEs (SoSuME-EN) were fully compliant with the standard. Five formulations were phenolic-based, containing single or mixed antioxidant compounds of different molecular structures; one was amine-based. Different dosages of the formulations were added to the ME samples (corresponding to the addition range ~50-48300 ppm). The MEs stability expressed as induction periods, IPs, determined by the Rancimat method, were used for calculation of stabilization factors, SFs, indicating the efficiency of the applied formulation. The formulation containing TBHQ was the most efficient concerning the lowest consumption rate and the highest SF achieved for the low quality ME. 2,2?-methylene-bis-(4-methyl-6-tert-butylphenol) was linked with higher antioxidant potency than amine-based formulation and the phenolic com-pounds with two bulky tert-butyl groups. Among 4 selected phenolic additives, BHT and 2,2?-methylene-bis-(4-methyl-6-tert-butylphenol) proved similar efficiency in SoSuME-EN (at ~500 ppm they produced SF~2), while it took twice of this amount for mixed butylphenols to achieve the same effect.


2019 ◽  
Vol 16 (31) ◽  
pp. 491-502
Author(s):  
Mikaelly Nayara SANTOS ◽  
Eliane Ferreira DE SOUZA ◽  
Antonio Rogério FIORUCCI ◽  
Margarete Soares DA SILVA

Biodiesel has emerged as an alternative source to fossil fuels. In Brazil, to assign a good quality to biodiesel, regarding oxidation stability, it is necessary that the biodiesel shows a minimum of 8 h of induction period (IP), determined at a temperature of 110 ºC by the Rancimat method, in accordance with Resolution No. 45/2014 of ANP. As, in most cases, the biodiesel produced does not meet the established standards of oxidation stability, it is necessary to add antioxidants, which slow down the oxidative process. Thus, this paper proposes a study on the action of curcumin, a natural antioxidant, on commercial biodiesel produced from blending 80% soybean oil and 20% beef tallow. In this study, samples were stored for 180 days at 43 ºC, according to ASTM D4625 recommendations. It was possible to observe that curcumin ensured greater oxidation stability to biodiesel and lower acid number values during the period of storage. Kinetic studies showed that samples with the addition of curcumin showed the highest value of activation energy for the oxidative degradation process, demonstrating that adding this natural antioxidant makes biodiesel more resistant to oxidation.


2021 ◽  
Vol 13 (17) ◽  
pp. 9613 ◽  
Author(s):  
K. M. V. Ravi Teja ◽  
P. Issac Prasad ◽  
K. Vijaya Kumar Reddy ◽  
N. R. Banapurmath ◽  
Manzoore Elahi M. Soudagar ◽  
...  

Environmentally friendly, renewable, and green fuels have many benefits over fossil fuels, particularly regarding energy efficiency, in addition to addressing environmental and socioeconomic problems. As a result, green fuels can be used in transportation and power generating applications. Furthermore, being green can ably address the emission-related issues of global warming. In view of the advantages of renewable fuels, two B20 fuel blends obtained from methyl esters of cashew nutshell (CHNOB), jackfruit seed (JACKFSNOB), and jamun seed oils (JAMSOB) were selected to evaluate the performance of a common rail direct injection (CRDI) engine. Compatibility of the nozzle geometry (NG) and combustion chamber shape (CCS) were optimized for increased engine performance. The optimized CCS matched with an increased number of injector nozzle holes in NG showed reasonably improved brake thermal efficiency (BTE), reduced emissions of smoke, HC, and CO, respectively, while NOx increased. Further combustion parameters, such as ignition delay (ID) and combustion duration (CD) reduced, while peak pressure (PP) and heat release rates (HRR) increased at the optimized injection parameters. The CRDI engine powered with JAMSOB B20 showed an increase in BTE of 4–5%, while a significant reduction in HC and CO emissions was obtained compared to JACKFSNOB B20 and CHNOB B20, with increased NOx.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S169-S172
Author(s):  
V. Spěváčková ◽  
I. Hrádková ◽  
M. Ebrtová ◽  
V. Filip ◽  
M. Tesařová

Model fat blends with a monoacylglycerol emulsifier with different acyl chain (C10, C12, C14, C16, C18, C18:1, C20, C22) were prepared and stored under oxygen atmosphere 8 weeks at temperature 20°C. Influence of monoacylglycerol on oxidation and oxidation stability of the model fat blends was studied. The model fat blends were prepared by mixing of fully hydrogenated structured fats that contained only palmitic and stearic acid (fully hydrogenated zero-erucic rapeseed oil and fully hydrogenated palmstearin) and half-refined soybean oil. Lipid oxidation was measured by determination of the peroxide value. Volatile oxidation products were detected by the solid phase microextraction in connection with gas chromatography-mass detector (SPME/GC-MS). The oxidative stability was measured by the Rancimat method. Lipid oxidation in model system with 1-octadecenoylglycerol (MAG18:1) was the most extended. On the other hand minimal lipid oxidation was found out in the presence of 1-tetradecanoylglycerol (MAG14) and 1-hexadecanoylglycerol (MAG16).


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


Sign in / Sign up

Export Citation Format

Share Document