scholarly journals Development of a Road Condition Information System using Augmented Reality Technology on Smartphones

Recently, accidents involving ground transportations are getting worse and more serious. Indonesian State Police (Korlantas POLRI) recorded the number of accidents in 2018 as many as 109,215 accidents. The number has incresed 4.69 percent compared to 2017 as many as 104,327 events. Road traffic accidents are caused by human error, the driver in this case. The driver's mistake is influenced by several factors, one of them is they cannot expect the road condition when they drive a vehicle at high speed. To solve this problem, drivers need information that can show road conditions. So, we present a new approach for detecting damaged roads by applying augmented reality technology. This research produces a road condition information system to help drivers get information about road conditions via smartphone. This system uses augmented reality technology with a markerless GPS Based Tracking method. The development of this system requires several stages such as collecting the data, data conversion, data classification, and views road condition. The researchers gathered the road condition data from the Public Work Department Semarang. This department itself undertakes a task to control the road condition in Semarang The trial of this system includes all drivers in Semarang city. Based on the results of the questionnaire responded to by 93 respondents, this test obtained an average value of 68%. So this system gets a pretty good response from the driver. Through this system, all drivers can avoid the damaged road condition which can cause traffic-congested and accident.

2021 ◽  
Vol 13 (11) ◽  
pp. 6439
Author(s):  
Juan Diego Febres ◽  
Miguel Ángel Mariscal ◽  
Sixto Herrera ◽  
Susana García-Herrero

Road traffic accidents are currently between the seventh and tenth leading cause of death in the world, with approximately 1.35 million people killed per year. Despite extensive efforts by governments, according to the World Health Organization, road accidents still cause far too many deaths, especially among pedestrians, cyclists and two-wheel motor vehicle riders, who together account for almost 50% of road traffic fatalities. In particular, Spain had 410,974 traffic accidents between 2016 and 2019, involving 722,516 vehicles and 61,177 pedestrians with varying degrees of injury. This study uses the Bayesian network method to understand how the pedestrians’ responsibility and actions at the time of the traffic accident affect the injury suffered by said pedestrian, also considering the variables of the road infrastructure and vehicles at the accident site. The results confirm that the variables linked to the unsafe behavior of pedestrians, and their responsibility in traffic accidents, increase the risk of suffering serious or fatal injuries during an accident; for example, if a pedestrian is distracted this increases his/her probability of suffering a severe injury (27.86%) with respect to not being distracted (20.73%). Conditions related to traffic in high-speed areas, areas with no or poor lighting, and areas lacking sidewalks, also record increases in pedestrian injury, as is the case in the age group of pedestrians over 60 years of age.


2019 ◽  
Vol 10 (3) ◽  
pp. 25-45
Author(s):  
Michail Vaitis ◽  
Dimitris Kavroudakis ◽  
Nikoletta Koukourouvli ◽  
Dimitrios Simos ◽  
Georgios Sarigiannis

Road traffic accidents come at a high price: 1.25 million road traffic deaths occurred globally in 2013. As the road network and the environmental conditions contribute significantly in the cause of accidents, it is crucial to understand where and when they occur, in order to plan actions for road safety improvement. For this reason, the Region of the North Aegean, Greece, in collaboration with the University of the Aegean, has established a spatial database and a web-based geographic information system (webGIS) for the registration, storage, visualization and analysis of the traffic accidents occurred in its jurisdiction. In this article, besides the development and operation of the system, the authors present a spatio-temporal analysis of the data collected since 2004 for the island of Lesvos. Hot spots and risky periods were identified, leading to useful conclusions and directions for road safety improvements.


Author(s):  
Byeongjoon Noh ◽  
Dongho Ka ◽  
David Lee ◽  
Hwasoo Yeo

Road traffic accidents are a leading cause of premature deaths and globally pose a severe threat to human lives. In particular, pedestrians crossing the road present a major cause of vehicle–pedestrian accidents in South Korea, but we lack dense behavioral data to understand the risk they face. This paper proposes a new analytical system for potential pedestrian risk scenes based on video footage obtained by road security cameras already deployed at unsignalized crosswalks. The system can automatically extract the behavioral features of vehicles and pedestrians, affecting the likelihood of potentially dangerous situations after detecting them in individual objects. With these features, we can analyze the movement patterns of vehicles and pedestrians at individual sites, and understand where potential traffic risk scenes occur frequently. Experiments were conducted on four selected behavioral features: vehicle velocity, pedestrian position, vehicle–pedestrian distance, and vehicle–crosswalk distance. Then, to show how they can be useful for monitoring the traffic behaviors on the road, the features are visualized and interpreted to show how they may or may not contribute to potential pedestrian risks at these crosswalks: (i) by analyzing vehicle velocity changes near the crosswalk when there are no pedestrians present; and (ii) analyzing vehicle velocities by vehicle–pedestrian distances when pedestrians are on the crosswalk. The feasibility of the proposed system is validated by applying the system to multiple unsignalized crosswalks in Osan city, South Korea.


2014 ◽  
Vol 505-506 ◽  
pp. 1148-1152
Author(s):  
Jian Qun Wang ◽  
Xiao Qing Xue ◽  
Ning Cao

The road traffic accidents caused huge economic losses and casualties, so it had been focused by the researchers. Lane changing characteristic is the most relevant characteristic with safety. The intent of lane changing was discussed. Firstly, the factors affecting the intent were analyzed, the speed satisfaction value and the space satisfaction value were proposed; then the data from the University of California, Berkeley was extracted and the number of vehicles changed lane more often and the vehicle ID were obtained; the BP neural network classification model was established, it was trained and testified by actual data. The results shown the method could predict the intent accurately.


2021 ◽  
Vol 116 (1) ◽  
pp. 299-304
Author(s):  
Assel Aliyadynovna Sailau

The number of vehicles on the roads of Almaty, Kazakhstan is growing from year to year. This brings about an increasing intensity and density of traffic flows in the streets which leads to congestion, decreasing speed of the traffic flow, increasing environmental pollution caused by car emissions, and which can potentially lead to the road traffic accidents (RTA), including fatalities. While the number of injuries grows up mainly due to drivers’ non-compliance with the speed limit, the environmental pollution is caused by longer traffic jams. Therefore, to reduce the level of road traffic injuries and emissions into the environment it is necessary to ensure the uniform movement of traffic flows in cities. Currently, one of the effective ways to do it is the use of transport telematics systems, in particular, control systems for road signs, road boards and traffic lights. The paper presents an analysis of existing systems and methods of traffic light regulation. The  analyses of the systems and methods are based on the use of homogeneous data, that is the data on standard parameters of traffic flows. The need in collecting and analyzing additional semi-structured data on the factors that have a significant impact on the traffic flows parameters in cities is shown as well. The work is dedicated to solving the problem of analysis and forecast of traffic flows in the city of Almaty, Kazakhstan. GPS data on the location of individual vehicles is used as the initial data for solving this problem. By projecting the obtained information onto the graph of the city's transport network, as well as using additional filtering, it is possible to obtain an estimate of individual parameters of traffic flows. These parameters are used for short-term forecast of the changes in the city's transport network.


2021 ◽  
Vol 5 (12(81)) ◽  
pp. 26-32
Author(s):  
V. Volkov ◽  
E. Nabatnikova ◽  
E. Lebedev

The groups of participants of the pedestrian and automobile flows, whose actions cause the greatest danger to the occurrence of conflict situations in the zone of unregulated transition, are identified. The factors determining the likelihood of a traffic accident at an unregulated transition are systematized, for which probability estimates of the occurrence of road traffic accidents are calculated. As an estimated parameter, the hazard coefficient of a conflict point of an unregulated transition is proposed, which is determined by the ratio of the probability of a traffic accident in the real-time hourly interval to the average annual probability of a traffic accident reduced to the hourly interval. The dependences of the hazard ratio of an unregulated transition are established on the most significant factors: the speed mode of transport in the area before the transition and the state of the road surface.


2018 ◽  
Vol 40 ◽  
pp. 01004 ◽  
Author(s):  
A. Bukova-Zideluna ◽  
A. Villerusa ◽  
A. Lama

Latvian national road accident statistics shows that for the vulnerable road users’ situation is critical, since pedestrians are involved in more than a quarter of road traffic accidents. This paper gives an analysis on pedestrians involved in road traffic accidents based on the road safety accident database in Latvia for the years 2010–2014. The total number of cases does not change significantly, however there has been an increase in pedestrian fatality rates over the period. From the total number of traffic accidents with pedestrians involved 92.4% had injuries, 6.8% were lethal cases and others didn't suffer from injuries. Out of 342 fatalities 37.7% occurred during the winter period, 56.1% in adverse weather (overcast, fog, rain or snow), 69.9% during twilight or darkness and 26.9% on weekends. Out of all accidents 55.3% occurred in the capital city Riga, but fatality rate was higher on main state roads. 8.1% of the total number of pedestrians involved in road traffic accidents was found to have alcohol in their blood right after the road traffic accident. Fatality rate was higher for those with exceeded BAC. Pedestrian injury risk analysis was associated with demographical and traffic-related factors, urbanization, visibility and seasonal patterns.


2011 ◽  
Vol 97-98 ◽  
pp. 1042-1045 ◽  
Author(s):  
Chuan Jiao Sun ◽  
Ru Yue Bai ◽  
Yuan Yuan Yu

9238 traffic accidents data are collected in rural road of China. Through the data analysis, the main causes of rural road traffic accident are presented. The external environment, the participant features, road features and accident characteristics are involved. The regression analysis in SPSS is applied to find the relationship between the accident features. Overall, the rural road traffic accident was mainly due to in the rural area there are mass travel mode, lower grade roads, poorer safety awareness of traveler and the road is lack of traffic safety facilities and so on.


2021 ◽  
Author(s):  
Stephanie Mayer ◽  
Fabio Andrade ◽  
Torge Lorenz ◽  
Luciano de Lima ◽  
Anthony Hovenburg ◽  
...  

<p>According to the 14<sup>th</sup> Annual Road Safety Performance Index Report by the European Transport Safety Council, annually more than 100,000 accidents occur on European roads, of which 22,660 people lost their lives in 2019. The factors contributing to road traffic accidents are commonly grouped into three categories: environment, vehicle or driver. The European accident research and safety report 2013 by Volvo states in about 30% of accidents contributing factors could be attributed to weather and environment leading for example to unexpected changes in road friction, such as black ice. In this work, we are developing a solution to forecast road conditions in Norway by applying the <em>Model of the Environment and Temperature of Roads – METRo</em>, which is a surface energy balance model to predict the road surface temperature. In addition, METRo includes modules for water accumulation at the surface (liquid and frozen) and vertical heat dissipation (Crevier and Delage, 2001). The road condition is forecasted for a given pair of latitude, longitude and desired forecast time. Data from the closest road weather station and postprocessed weather forecast are used to initialize METRo and provide boundary conditions to the road weather forecast. The weather forecasts are obtained from the THREDDS service and the road weather station data from the FROST service, both provided by MET Norway. We develop algorithms to obtain the data from these services, process them to match the METRo model input requirements and send them to METRo’s pre-processing algorithms, which combine observations and forecast data to initialize the model. In a case study, we will compare short-term METRo forecasts with observations obtained by road weather stations and with observations retrieved by car-mounted environmental sensors (e.g., road surface temperature). This work is part of the project <em>AutonoWeather - Enabling autonomous driving in winter conditions through optimized road weather interpretation and forecast</em> financed by the Research Council of Norway in 2020. </p>


ICCD ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 601-606
Author(s):  
Widodo Budi Dermawan ◽  
Dewi Nusraningrum

Every year we lose many young road users in road traffic accidents. Based on traffic accident data issued by the Indonesian National Police in 2017, the number of casualties was highest in the age group 15-19, with 3,496 minor injuries, 400 seriously injured and 535 deaths. This condition is very alarming considering that student as the nation's next generation lose their future due to the accidents. This figure does not include other traffic violations, not having a driver license, not wearing a helmet, driving opposite the direction, those given ticket and verbal reprimand. To reduce traffic accident for young road user, road safety campaigns were organized in many schools in Jakarta. This activity aims to socialize the road safety program to increase road safety awareness among young road users/students including the dissemination of Law No. 22 of 2009 concerning Road Traffic and Transportation. Another purpose of this program is to accompany school administrators to set up a School Safe Zone (ZoSS), a location on particular roads in the school environment that are time-based speed zone to set the speed of the vehicle. The purpose of this paper is to promote the road safety campaigns strategies by considering various campaign tools.


Sign in / Sign up

Export Citation Format

Share Document