scholarly journals Brain MRI Classification using Deep Learning Algorithm

The brain tumor is one of the most dangerous, common and aggressive diseases which leads to a very short life expectancy at the highest grade. Thus, to prevent life from such disease, early recognition, and fast treatment is an essential step. In this approach, MRI images are used to analyze brain abnormalities. The manual investigation of brain tumor classification is a time-consuming task and there might have possibilities of human errors. Hence accurate analysis in a tiny span of time is an essential requirement. In this approach, the automatic brain tumor classification algorithm using a highly accurate Convolutional Neural Network (CNN) algorithm is presented. Initially, the brain part is segmented by thresholding approach followed by a morphological operation. The AlexNet transfer learning network of CNN is used because of the limitation of the brain MRI dataset. The classification layer of Alexnet is replaced by the softmax layer with benign and malignant training images and trained using small weights. The experimental analysis demonstrates that the proposed system achieves the F-measure of 98.44% with low complexity than the state-of-arts method.

Medical imaging is an emerging field in engineering. As traditional way of brain tumor analysis, MRI scanning is the way to identify brain tumor. The core drawback of manual MRI studies conducted by surgeons is getting manual visual errorswhich can lead toofa false identification of tumor boundaries. To avoid such human errors, ultra age engineering adopted deep learning as a new technique for brain tumor segmentation. Deep learning convolution network can be further developed by means of various deep learning models for better performance. Hence, we proposed a new deep learning algorithm development which can more efficiently identifies the types of brain tumors in terms of level of tumor like T1, T2, and T1ce etc. The proposed system can identify tumors using convolution neural network(CNN) which works with the proposed algorithm “Sculptor DeepCNet”. The proposed model can be used by surgeons to identify post-surgical remains (if any) of brain tumors and thus proposed research can be useful for ultra-age neural surgical image assessments. This paper discusses newly developed algorithm and its testing results.


Author(s):  
Bichitra Panda ◽  
Chandra Sekhar Panda

Brain tumor is one of the leading disease in the world. So automated identification and classification of tumors are important for diagnosis. Magnetic resonance imaging (MRI)is widely used modality for imaging brain. Brain tumor classification refers to classify the brain MR images as normal or abnormal, benign or malignant, low grade or high grade or types. This paper reviews various techniques used for the classification of brain tumors from MR images. Brain tumor classification can be divided into three phases as preprocessing, feature extraction and classification. As segmentation is not mandatory for classification, hence resides in the first phase. The feature extraction phase also contains feature reduction. DWT is efficient for both preprocessing and feature extraction. Texture analysis based on GLCM gives better features for classification where PCA reduces the feature vector maintaining the accuracy of classification of brain MRI. Shape features are important where segmentation has already been performed. The use of SVM along with appropriate kernel techniques can help in classifying the brain tumors from MRI. High accuracy has been achieved to classify brain MRI as normal or abnormal, benign or malignant and low grade or high grade. But classifying the tumors into more particular types is more challenging.


2018 ◽  
Vol 11 (3) ◽  
pp. 1457-1461 ◽  
Author(s):  
J. Seetha ◽  
S. Selvakumar Raja

The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of patients. Generally, various image techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound image are used to evaluate the tumor in a brain, lung, liver, breast, prostate…etc. Especially, in this work MRI images are used to diagnose tumor in the brain. However the huge amount of data generated by MRI scan thwarts manual classification of tumor vs non-tumor in a particular time. But it having some limitation (i.e) accurate quantitative measurements is provided for limited number of images. Hence trusted and automatic classification scheme are essential to prevent the death rate of human. The automatic brain tumor classification is very challenging task in large spatial and structural variability of surrounding region of brain tumor. In this work, automatic brain tumor detection is proposed by using Convolutional Neural Networks (CNN) classification. The deeper architecture design is performed by using small kernels. The weight of the neuron is given as small. Experimental results show that the CNN archives rate of 97.5% accuracy with low complexity and compared with the all other state of arts methods.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009074
Author(s):  
Adam L. Tyson ◽  
Charly V. Rousseau ◽  
Christian J. Niedworok ◽  
Sepiedeh Keshavarzi ◽  
Chryssanthi Tsitoura ◽  
...  

Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.


2016 ◽  
Vol 61 (4) ◽  
pp. 413-429 ◽  
Author(s):  
Saif Dawood Salman Al-Shaikhli ◽  
Michael Ying Yang ◽  
Bodo Rosenhahn

AbstractThis paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.


Automated brain tumor identification and classification is still an open problem for research in the medical image processing domain. Brain tumor is a bunch of unwanted cells that develop in the brain. This growth of a tumor takes up space within skull and affects the normal functioning of brain. Automated segmentation and detection of brain tumors are important in MRI scan analysis as it provides information about neural architecture of brain and also about abnormal tissues that are extremely necessary to identify appropriate surgical plan. Automating this process is a challenging task as tumor tissues show high diversity in appearance with different patients and also in many cases they tend to appear very similar to the normal tissues. Effective extraction of features that represent the tumor in brain image is the key for better classification. In this paper, we propose a hybrid feature extraction process. In this process, we combine the local and global features of the brain MRI using first by Discrete Wavelet Transformation and then using texture based statistical features by computing Gray Level Co-occurrence Matrix. The extracted combined features are used to construct decision tree for classification of brain tumors in to benign or malignant class.


Author(s):  
P. Chandra Sandeep

The brain is the most crucial part of our human body which acts as central coordinating system for all the controlling and all regular functions of our body. The continuous growth of abnormal cells which creates certain mass of tissue is called as tumor. Tumor in the brain can be either formed inside the brain or gets into brain after formed at other part. But there is no clear information regarding the formation of brain tumor till date. Though the formation tumor in brain is not common or regular but the mortality rate of the infected people is very high because the brain is major part of body. So, it is very important get the treatment at the early stages of brain tumor but there is no direct procedure for detection and classification of tumor in the very first step of diagnosis. In actual medical diagnosis, mri images alone can’t be able to determine the detected tumor as either the cancerous or non-cancerous. But the tumor may be sometimes danger to life or may not be danger to life. Tumor inside the brain can be of either the benign(non- cancerous) or the malignant(cancerous). So, we need to detect the tumor from the MRI images through image processing and then to classify the detected tumor as it belongs to either the benign or malignant tumor. We are going to get the brain mri images as our dataset for our proposed method but the images we got may have the noise. So, we need to preprocess the image using the image preprocessing techniques. We are going to use several algorithms like thresholding, clustering to make the detection of tumor by using the image processing and image segmentation and after the detection of tumor we are going do feature extraction. This step involves the extraction of detected objects features using DWT. This extracted features are given as input to classifier algorithms like SVM’s and CNN after reduction of features using the PCA.


2017 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Rania Ahmed Kadry Abdel Gawad Birry

Abstract—Alzheimer’s disease (AD) is a brain disease that causes a slow decline in memory, thinking and reasoning skills. It represents a major public health problem.  Magnetic Resonance Imaging (MRI) have shown that the brains of people with (AD) shrink significantly as the disease progresses. This shrinkage appears in specific brain regions such as the hippocampus which is a small, curved formation in the brain that plays an important role in the limbic system also involved in the formation of new memories and is also associated with learning and emotions.  Medical information on brain MRI is used in detecting the abnormalities in physiological structures. Structural MRI measurements can detect and follow the evolution of brain atrophy which is a marker of the disease progression; therefore, it allows diagnosis and prediction of AD.  The research’s main target is the early recognition of Alzheimer’s disease automatically, which will thereby avoid deterioration of the case resulting in complete brain damage stage.  Alzheimer’s disease yields visible changes in the brain structures. The aim is to recognize if the patient belongs to Alzheimer’s disease category or a normal healthy person at an early stage. Initially, image pre-processing and features extraction techniques are applied including data reduction using Discrete Cosine Transform (DCT) and Cropping, then traditional classification techniques like Euclidean Distance, Chebyshev Distance, Cosine Distance, City Block Distance, and Black pixel counter, were applied on the resulting vectors for classification. Image pre-processing includes noise reduction, Gray-scale conversion and binary scale conversion were applied for the MRI images. Feature extraction techniques follow including cropping and low spatial frequency components (DCT). This paper aims to automatically recognize and detect Alzheimer’s infected brain using MRI, without the need of clinical expert. This early recognition would be helpful to postpone the disease progression and maintain it at an almost steady stage. It was concluded after collecting a dataset of 50 MRI , 25 for normal MRI and  25 for AD MRI that Chebyshev Distance classifier yielded the highest success rate in the recognition of Alzheimer’s disease with accuracy 94% compared to other classification techniques used where, Euclidean Distance is 91.6%,  Cosine Distance is 86.8%, City block Distance is 89.6%, Correlation Distance is 86.4% and Black pixels counter is 90%.


Brain tumor is an unusual intensification of cells inside the skull. The brain MRI scanned images is segmented to extract brain tumor to analyze type and depth of tumor. In order to reduce the time consumption of brain tumor extraction, an automatic method for detection of brain tumor is highly recommended. Deep machine learning methods are used for automatic detection of the brain tumor in soft tissues at an early stage which involves the following stages namely: image pre-processing, clustering and optimization. This paper addresses previously adduced pre-processing (Skull stripping, Contrast stretching, clustering (k-Means, Fuzzy c-means) and optimization (Cuckoo search optimization, Artificial Bee Colony optimization) strategies for abnormal brain tumor detection from MRI brain images. Performance evaluation is done based on computational time of clustering output and optimization algorithms are analyzed in terms of sensitivity, specificity, and accuracy


Sign in / Sign up

Export Citation Format

Share Document