scholarly journals Fundus Image Analysis to Detect Abnormalities in Diabetic Retinopathy using Computer Aided Design Tools - A Review

Diabetic retinopathy is becoming a major threat to visual loss in human beings. Many researchers are working to develop early detection techniques, which may reduce the risk of vision loss using image-processing techniques like image enhancement and segmentation. Improving the quality of medical images to detect the disease at an early stage is crucial for further medication. It is gaining more focus with automated techniques for machine learning. Filtering and morphological operators enhance image contrast and interested region can be extracted using segmentation techniques from the fundus image of the retina. For feature analysis the optical disk, localization of blood vessels and segmentation are very useful to observe the parameters like area, length and perimeter of blood vessels etc. Algorithms for this analysis include preprocessing, segmentation, feature extraction and classification. This paper tries to give a detailed review of various image-processing methods used in early detection of diabetic retinopathy and future insights to develop algorithms, which reduces clinician’s time for diagnosis and pathogenesis.

2018 ◽  
Vol 7 (2) ◽  
pp. 687
Author(s):  
R. Lavanya ◽  
G. K. Rajini ◽  
G. Vidhya Sagar

Retinal Vessel detection for retinal images play crucial role in medical field for proper diagnosis and treatment of various diseases like diabetic retinopathy, hypertensive retinopathy etc. This paper deals with image processing techniques for automatic analysis of blood vessel detection of fundus retinal image using MATLAB tool. This approach uses intensity information and local phase based enhancement filter techniques and morphological operators to provide better accuracy.Objective: The effect of diabetes on the eye is called Diabetic Retinopathy. At the early stages of the disease, blood vessels in the retina become weakened and leak, forming small hemorrhages. As the disease progress, blood vessels may block, and sometimes leads to permanent vision loss. To help Clinicians in diagnosis of diabetic retinopathy in retinal images with an early detection of abnormalities with automated tools.Methods: Fundus photography is an imaging technology used to capture retinal images in diabetic patient through fundus camera. Adaptive Thresholding is used as pre-processing techniques to increase the contrast, and filters are applied to enhance the image quality. Morphological processing is used to detect the shape of blood vessels as they are nonlinear in nature.Results: Image features like, Mean and Standard deviation and entropy, for textural analysis of image with Gray Level Co-occurrence Matrix features like contrast and Energy are calculated for detected vessels.Conclusion: In diabetic patients eyes are affected severely compared to other organs. Early detection of vessel structure in retinal images with computer assisted tools may assist Clinicians for proper diagnosis and pathology. 


2020 ◽  
Vol 8 (5) ◽  
pp. 3746-3749

The Diabetic Retinopathy (DR) is playing a crucial role in clinical data analysis to diagnose abnormality in retina. Many situations the early stage of patient is not aware of any symptoms until it is too late for effective treatment. The abnormality in the blood vessels of diabetics, a way will be paved for prompt diagnosis of DR. In this work, we proposed the Dehazing method of fundus image to detect and classify the disease condition based on changes in blood vessels using thresholding segmentation technique using mean square error (MSE). Then formulate the area of extracted blood vessels in the subsequent analysis to classify accurately.


2020 ◽  
Vol 18 (44) ◽  
pp. 1-16
Author(s):  
Faleh H. Mahmood

 abstract Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from the digital fundus images. In this research, a novel methodology was introduced to separate retinal blood vessel network. The suggested system in this research involves four stages, after image acquisition, the pre-processes of the image to preparing and improving the image quality is the first stage. Morphological operations are used for the detection of blood vessels. In this research, we will use two morphological operations: erosion and dilation. These two operations have two inputs, a binary image, and a structuring element object. We will use two morphological processes (boundary extraction and top, bottom hat transform). Before these operations, we will use applying a canny edge detector technique to obtain the edges of the retina image. The technique is tried on shading retinal pictures acquired from STARE and DRIVE databases which are accessible on the web as well as the samples of retinal images were obtained from the digital camera from Ibn Al-Haytham specialist Hospital for Eye in Baghdad, Iraq. Good results and effective were obtained for blood vessel detected and extract  


2019 ◽  
pp. 2520-2530
Author(s):  
Faleh H. Mahmood ◽  
Shahad Abdul-Jabbar Aziz

Diabetic retinopathy (DR) is a diabetes- caused disease that is associated with  leakage of fluid from the blood vessels into the retina, leading to its damage. It is one of the most common diseases that can lead to weak vision and even blindness. Exudates is a clear indication of diabetic retinopathy, which is the main cause of blindness in people with diabetes. Therefore, early detection of exudates is a crucial and essential step to prevent blindness and vision loss is in the analysis of digital diabetic retinopathy systems. This paper presents an improved approach for detection of exudates in retina image using supervised-unsupervised Minimum Distance (MD) segmentation method. The suggested system includes three stages; First, after image acquisition, it is pre-processed for preparing and improving its quality. Second, the simple toward interpretation and analysis of image is segmentation as another stage.      In this research, we presented a method which is used for segmentation of     exudates by the adaptive (supervised-unsupervised) Minimum Distance (MD)  creation segmentation algorithm with two non-overlapping clusters. The method was proposed based on its performance compared with other methods and followed by exudates extraction as a final stage. This proposed framework helps the ophthalmologists to distinguish the problem earlier, which enables them to recommend a superior medication for forestalling further retinal harm.


2020 ◽  
Vol 17 (1) ◽  
pp. 378-383
Author(s):  
Abhijit U. Kurtakoti ◽  
Namrata D. Hiremath ◽  
Nirmala S. Patil ◽  
Aishwarya Rane

Nervous system, being the most critical part of the human body has attracted many neuro-surgeons to diagnose the neurological diseases which are of primary concern. It’s been a challenge since many years. The recent report of the World Health Organization’s declares that neurological syndrome, such as, Alzheimer’s disease, affects around one billion human beings. As a consequence of neurological disorder there have been around 6.8 million deaths globally. Along with being an irremediable Disease it is at the same time a progressive brain disease which gradually diminishes the cognitive ability and affects memory which in turn affects routine life. It is prevalent cause of dementia among the elderly. This paper presents the work which assesses the efficacy of classification using unsupervised learning along with the image processing employed on the images of Magnetic Resonance Imaging scans to calculate the probability of early detection of Alzheimer’s disease. The whole brain atrophy is considered as strong diagnostic test for Alzheimer’s disease. The paper expresses the image processing methods such as pixel thresholding and unsupervised learning methods like k-means clustering, and a tailored algorithm incorporated for this specific case. The algorithm has been implemented using platforms, OpenCV and R libraries (for k means clustering), which expedites the effectiveness of the developed prototype which can be used in the hospitals/clinics, reducing the need for any proprietary software. The final output of the prototype can assist the doctors to diagnose Alzheimer’s disease at an early stage. These results can be co-related with psychiatric results for better understanding and treatment required for Alzheimer’s disease.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Author(s):  
Ujwala W. Wasekar ◽  
R. K. Bathla

he disorder of Diabetic Retinopathy (DR), a complication of Diabetes that may lead to blindness if not treated at an early stage, is diagnosed by evaluating the retina images of eye. However, the manual grading of images for identifying the seriousness of DR disease requires many resources and it also takes a lot of time. Automated systems give accurate results along with saving time. Ophthalmologists may find it useful in reducing their workload. Proposed work presents the method to correctly identify the lesions and classify DR images efficiently. Blood leaking out of veins form features such as exudates, microaneurysms and haemorrhages, on retina. Image processing techniques assist in DR detection. Median filtering is used on gray scale converted image to reduce noise. The features of the pre-processed images are extracted by textural feature analysis. Optic disc (OD) segmentation methodology is implemented for the removal of OD. Blood vessels are extracted using haar wavelet filters. KNN classifier is applied for classifying retinal image into diseased or healthy .The proposed algorithm is executed in MATLAB software and analyze results with regard to certain parameters such as accuracy, sensitivity, and specificity. The outcomes prove the superiority of the new method with sensitivity of 92.6%, specificity of 87.56% and accuracy of 95% on Diaretdb1 database.


Author(s):  
Syna Sreng ◽  
Jun-Ichi Takada ◽  
Noppadol Maneerat ◽  
Don Isarakorn ◽  
Ruttikorn Varakulsiripunth ◽  
...  

When pancreas fails to secrete sufficient insulin in the human body, the glucose level in blood either becomes too high or too low. This fluctuation in glucose level affects different body organs such as kidney, brain, and eye. When the complications start appearing in the eyes due to Diabetic Mellitus (DM), it is called Diabetic Retinopathy (DR). DR can be categorized in several classes based on the severity, it can be Microaneurysms (ME), Haemorrhages (HE), Hard and Soft Exudates (EX and SE). DR is a slow start process that starts with very mild symptoms, becomes moderate with the time and results in complete vision loss, if not detected on time. Early-stage detection may greatly bolster in vision loss. However, it is impassable to detect the symptoms of DR with naked eyes. Ophthalmologist harbor to the several approaches and algorithm which makes use of different Machine Learning (ML) methods and classifiers to overcome this disease. The burgeoning insistence of Convolutional Neural Network (CNN) and their advancement in extracting features from different fundus images captivate several researchers to strive on it. Transfer Learning (TL) techniques help to use pre-trained CNN on a dataset that has finite training data, especially that in under developing countries. In this work, we propose several CNN architecture along with distinct classifiers which segregate the different lesions (ME and EX) in DR images with very eye-catching accuracies.


Sign in / Sign up

Export Citation Format

Share Document