scholarly journals Performance of Various SiC Devices and their Behavior in DC/DC Converter

An extensive research on nano materials was carried out and the properties of Si were studied, Post study it was felt that there must be a material which exhibits semiconducting properties of Si with high breakdown voltage and work till high temperature range. Silicon Carbide (SiC) devices provided the answer for this. These devices are well known for high frequency, high voltage, high temperature and high power for their good material properties compared with silicon power MOSFET. In this paper, a study was conducted on various Silicon Carbide devices available in the market and the comparative performance of these devices were analysed. Furthermore there is a comparison of N channel silicon MOSFET device and silicon carbide device placed in bidirectional DC/DC buck converter in which Silicon Carbide device exhibit superior properties than Si device.

1996 ◽  
Vol 438 ◽  
Author(s):  
V. Heera ◽  
W. Skorupa

AbstractSiC is a promising semiconductor material for high-power/high-frequency and hightemperature electronic applications. For selective doping of SiC ion implantation is the only possible process. However, relatively little is known about ion implantation and annealing effects in SiC. Compared to ion implantation into Si there is a number of specific features which have to be considered for successful ion beam processing of SiC. A brief review is given on some aspects of ion implantation in and annealing of SiC. The ion implantation effects in SiC are discussed in direct comparison to Si. The following issues are addressed: ion ranges, radiation damage, amorphization, high temperature implantation, ion beim induced crystallization and surface erosion.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1241-1245
Author(s):  
Li Jun Xie ◽  
Xian Zheng Liu ◽  
Jin Yuan Li ◽  
Kun Shan Yu

SiC MOSFET, as a promising power semiconductor devices, has attracted attention from many laboratories and companies for its super performance in high temperature, high voltage and high frequency applications. To protect the devices from overvoltage induced by parasitic inductance in high frequency applications, snubber circuit is a must. In this paper, simulation of snubber circuit in a high frequency PWM inverter is invested, under different numbers of snubber circuit , parasitic parameters, different kinds of load and whether a SiC SBD exsits. Some useful conclusions are obtained to help design more perfect snubber circuit.


2018 ◽  
Vol 924 ◽  
pp. 302-305
Author(s):  
Muhammad Haroon Rashid ◽  
Ants Koel ◽  
Toomas Rang

In the last decade, silicon carbide (SiC) has gained a remarkable position among wide bandgap semiconductors due to its high temperature, high frequency, and high power electronics applications. SiC heterostructures, based on the most prominent polytypes like 3C-SiC, 4H-SiC and 6H-SiC, exhibit distinctive electrical and physical properties that make them promising candidates for high performance optoelectronic applications. The results of simulations of nn-junction 3C-4H/SiC and 6H-4H/SiC heterostructures, at the nanoscale and microscale, are presented in this paper. Nanoscale devices are simulated with QuantumWise Atomistix Toolkit (ATK) software, and microscale devices are simulated with Silvaco TCAD software. Current-voltage (IV) characteristics of nanoscale and microscale simulated devices are compared and discussed. The effects of non-ideal bonding at the heterojunction interface due to lattice misplacements (axial displacement of bonded wafers) are studied using the ATK simulator. These simulations lay the groundwork for the experiments, which are targeted to produce either a photovoltaic device or a light-emitting diode (working in the ultraviolet or terahertz spectra), by direct bonding of SiC polytypes.


2003 ◽  
Vol 764 ◽  
Author(s):  
C.-M. Zetterling ◽  
S.-M. Koo ◽  
E. Danielsson ◽  
W. Liu ◽  
S.-K. Lee ◽  
...  

AbstractSilicon carbide has been proposed as an excellent material for high-frequency, high-power and high-temperature electronics. High power and high frequency applications have been pursued for quite some time in SiC with a great deal of success in terms of demonstrated devices. However, self-heating problems due to the much higher power densities that result when ten times higher electrical fields are used inside the devices needs to be addressed. High-temperature electronics has not yet experienced as much attention and success, possibly because there is no immediate market. This paper will review some of the advances that have been made in high-temperature electronics using silicon carbide, starting from process technology, continuing with device design, and finishing with circuit examples. For process technology, one of the biggest obstacles is long-term stable contacts. Several device structures have been electrically characterized at high temperature (BJTs and FETs) and will be compared to surface temperature measurements and physical device simulation. Finally some proposed circuit topologies as well as novel solutions will be presented.


Sign in / Sign up

Export Citation Format

Share Document