scholarly journals Thermo-Structural Analysis of Ventilated and Non – Ventilated Disc Brake using Different Materials.

Every year Automobile industry is evolving. Significant inventions and improvements are occurring day by day. One of the important inventions in an automobile industry is the braking system. Disc brakes are widely used for maintaining and controlling speed of the vehicle by hindering the rotation of the shaft or any mechanical member. Material selection and design are one of the important factors, which plays an important role in the dissipation of heat generated. This paper compares three different materials i.e. C/C-SiC ceramic, Titanium grade 5 alloy, Tungsten Carbide, with two of the popular designs i.e. Ventilated disc and Solid disc (non-ventilated disc)

2017 ◽  
Vol 2 (29) ◽  
pp. 116
Author(s):  
Ali Belhocine ◽  
Wan Zaidi Wan-Omar

Braking system is one of the basic organs to control a car. For many years, the disc brakes have been used in automobiles for safe retardation of the vehicles. During braking, enormous amount of heat will be generated, and for effective braking, sufficient heat dissipation is essential. The specific air flow surrounding the brake rotor depends on the thermal performance of the disc brake and hence, the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as the study of this case, to make out the behaviour of air flow distribution around the disc brake components using ANSYS CFX software. The main object of this work is to calculate the heat transfer coefficient (h) of the full and ventilated brake discs as a function of time using the CDF analysis which will be used later in the transient thermal analysis of the disc in ANSYS Workbench 11.0.


Author(s):  
Alexander Olshevskiy ◽  
Alexey Olshevskiy ◽  
Oleg Berdnikov ◽  
Chang-Wan Kim

The purpose of this research is to identify the thermomechanical factors to be considered in simulation of the braking process, calculation of the distribution of the contact pressure, and temperature and obtain wear patterns for the disc brake system in operation. The factors affecting the temperature distribution and stress–strain state of disc brakes in railway vehicles are analyzed. The mutual influence of the thermal problem and contact problem was considered. The results of the numerical simulations for the finite element models can be used in optimizing the disc brake design in order to reduce wear and provide higher reliability of the braking system.


Author(s):  
Ratnajeet Wadile

Abstract: The disk brakes are special mechanized parts in a vehicle attached with the tires to help reduce the velocity of the vehicle. As the brake pads caused friction with the disc brakes, there is a temperature rise. Due to this there are great chances of disc brake’s failure if temperature rises above some permissible limit. Solidworks and ANSYS are the design and analysis tools which are used to accomplish this project. The disc brake was designed using Solidworks and it was analysed in ANSYS workbench. The main aim of this project is to analyse two-disc brakes manufactured with different materials to compare their properties and select one with most benefits. Keywords: ANSYS, FEA, Disc brake, Thermal analysis, braking system, Radiation.


2003 ◽  
Author(s):  
J. Jancirani ◽  
S. Chandrasekaran ◽  
P. Tamilporai

In the recent scenario of braking system for automobiles, disc brake takes up a wide range of applications, because of its simplicity in construction, operation and not self energizing as in the case of drum brakes. Since the disc brakes takes up a wide range of application, it is essential to ensure the reliable function of the braking system under varied operating conditions. The reliable function of the disc brake system is purely depends on the system based design. In this work, a linear regression technique is used for the optimal design of the disc brake rotor for varied operating conditions. Various forces involved during braking, energy generated during braking and the corresponding effective stopping distances were also calculated using appropriate governing relations and equations. In the varied operating conditions, the heat energy generated during braking should be driven away form the working surfaces of the components. To analyze this thermal loading and cooling phenomenon, a conventional convective heat transfer approach was also formulated and developed in this work. The analytical findings of the above approaches are demonstrated at the end and it is found to be quite satisfactory.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 160
Author(s):  
R. A. García-León ◽  
N. Afanador-García ◽  
J. A. Gómez-Camperos

In the braking system, the heat dissipation generated by the friction between the disc and pad should be evacuated as quickly as possible. In this work, five common different automotive disc brakes were studied through mathematical theories of heat transfer and numerical methods using the ANSYS software. In addition, a direct comparison between experimental, theoretical, and simulation values found in the open literature was performed to propose a disc brake with an improved geometry in terms of dissipation of heat transfer. The numerical results were considered to propose two possible solutions of disc brake geometries using N-38 ventilation blades used in aeronautic engineering. An improvement in temperature dissipation was achieved by approximately 23.8% compared to the five geometries analyzed with a simple type N-38 ventilation blade. The heat dissipation in the brakes strongly depends on the geometry of the disc, the geometry of the blades, the material from which it is manufactured, the material of the pad, the weight of the vehicle, and the operating conditions, as can be verified with mathematical calculations and experiments. The results obtained demonstrate that the discs can be used effectively in extreme working conditions (80 km/h and 33°C), without affecting the safety of the occupants and the braking system.


Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 21-27
Author(s):  
Yudi Kristyawan ◽  
Muchammad Asro Rofi’i

The braking system is very important on a motorcycle. The primary function of the braking system is to slow down and even stop the motorcycle. The braking system using disc brakes on motorcycles is commonly used today, especially on automatic transmission motorcycles. One of the disadvantages of disc brakes is the heat caused by the disc's friction with the brake pads if you apply continuous braking. This continuous braking is often done by a motor rider when crossing downhill roads in mountainous areas. Excessive heat in the disc brakes causes the brake fluid to boil, resulting in air bubbles resulting in braking failure. The failure of the braking system on a motorcycle is hazardous for the rider and others. The experimental method detects braking system failure by catching the disc brake's temperature with a touchless temperature sensor, MLX90614. Temperature detection is processed with Arduino as a control, and the temperature is displayed on the LCD. If the disc brake temperature is above 200oC, a buzzer is activated as a warning to the driver. The test results show that the system can display a temperature reading on the LCD lower than the thermometer gun, with the most inferior reading difference of 0.2oC and the highest 0.4oC. The system can also display notifications to users on disc brake temperatures above 200oC, namely at temperatures of 211.1oC, 224.3oC, and 237.5oC, which were achieved at 200, 225, and 250 seconds.


2018 ◽  
Vol 09 (01) ◽  
pp. 1750008 ◽  
Author(s):  
Ali Belhocien ◽  
Wan Zaidi Wan Omar

Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.


Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Jinge Liu ◽  
Chaoxun Guo ◽  
Tonggang Liu ◽  
...  

Disc brakes have been applied in various automobiles widely and their braking performance has vitally important effects on the safe operation of automobiles. Although numerous researches have been conducted to find out the influential law and mechanism of working condition parameters like braking pressure, initial braking speed, and interface temperature on braking performance of disc brakes, the influence of magnetic field is seldom taken into consideration. In this paper, based on the novel automotive frictional-magnetic compound disc brake, the influential law of magnetic field on braking performance was investigated deeply. First, braking simulation tests of disc brakes were carried out, and then dynamic variation laws and mechanisms of braking torque and interface temperature were discussed. Furthermore, some parameters including average braking torque, trend coefficient and fluctuation coefficient of braking torque, average temperature, maximum temperature rise, and the time corresponding to the maximum temperature rise were extracted to characterize the braking performance of disc brakes. Finally, the influential law and mechanism of excitation voltage on braking performance were analyzed through braking simulation tests and surface topography analysis of friction material. It is concluded that the performance of frictional-magnetic compound disc brake is prior to common brake. Magnetic field is greatly beneficial for improving the braking performance of frictional-magnetic compound disc brake.


2011 ◽  
Vol 10 (01) ◽  
pp. 135-142
Author(s):  
CHUNMEI ZHANG ◽  
YONGFENG LI

Thermal analysis can be used as one of the basis for the friction pair material selection in high-speed friction braking system. In this study, the experimental results showed that surface temperature could be reduced by increasing the radius of the friction disk or thermal conductivity coefficient of disk material with stable braking; In the early stage of long braking, the temperature on the friction surface rises rapidly, but further braking does not lead to a significant rise in temperature; In the case of short braking, there is not enough time for the friction surface to reach the critical temperature, and the disk surface reaches the maximum temperature at the end of braking. During long braking, the dimensionless time capacity of the friction surface reaching the highest temperature is F0 ≈ 0.1F0s.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5600
Author(s):  
Sylwester Żelazny ◽  
Witold Żukowski ◽  
Dariusz Bogdał ◽  
Szczepan Bednarz ◽  
Wiktor Kasprzyk ◽  
...  

Superalloys provide high corrosion resistance and are widely used as high-performance materials in aerospace, automotive, chemical, and other industries. Herein, the investigation into the characteristics and properties of alloy waste; Inconel 625, Inconel 718, and Titanium Grade 5, from the automotive industry, was introduced as a result of a recovery in various processes. For this reason, the following procedures were carried as follows; the washing process to remove oil from the swarf was evaluated using several commercial agents and for the process of thermal disposal of processing fluids, a temperature of 900 °C was used in a muffle furnace without air access. The presented studies show that the commercially available series of washing agents did not modify the composition of the surface. However, the high temperatures during the calcination of oil residues are affecting the elemental composition of the alloys. According to the results of the analyses, it is not possible to remove 100% of the oil residues from alloy waste using washing agents based on light organic fractions; however, the effectiveness of this method reaches 99%. In this report, accurate SEM-EDS analyses show changes that occur on the surface after machining and removal of processing fluids. The NMR and GC/MS investigations indicate contaminants as a mixture of aliphatic and cycloaliphatic hydrocarbons with carbon numbers from C8–C30.


Sign in / Sign up

Export Citation Format

Share Document