scholarly journals Effect of Addition of Plastic in Bituminous Mixes Prepared with Modified Bitumen

The present study deal with the utilization of PET waste in Bituminous Concrete prepared with modified bitumen. The detailed analysis will be carried out to assess the physical and strength characteristic of prepared BC mix as per the Indian Standards. Modified bitumen used is CRMB -55 which is a binder obtained from the recycling of rubber tyre. Modified bitumen is temperature susceptible and also increases the fatigue life of pavement under the heavy traffic load. The study involved in the evaluation of more than one modification in bituminous mixes such as CRMB -55 is itself modified binder while modification has been done in the aggregate blend by addition of plastic. However, a combination has not yet been tried. The Marshall Stability test was performed to assess strength characteristics. The Marshall Stability values increase with the amount of PET and maximum stability was obtained at 6% by weight of the binder. The considerable increment was observed in Stability value with PET 6% dosage as 18.99%.

The main objective of this study was to investigate the effect of SBS polymer and warm mix additive on the performance of bituminous concrete mixes. SBS polymer dosage was kept 3%, 5% and 7% and Zycotherm additive dosage was kept 0.1% for all binder mixes. Comparisons were made between Base bitumen, SBS modified bitumen and Zycotherm modified bitumen. For preparation of bituminous mixes, two different types of aggregates were used in this study i.e. Limestone and riverbed aggregate. To evaluate the performance of modified binder; Marshall Stability test, Indirect Tensile Strength (ITS) test and Rheological test were performed on binders and bituminous concrete mixes. From Marshall Stability test, SBS dosage of 5% was found to be optimum polymer content for both aggregate mixes. Maximum tensile strength for both the aggregate bituminous mixes was achieved at 5% SBS content. It was observed that maximum Marshall Stability was achieved when Limestone aggregates were used for preparation of bituminous mixes. Zycotherm additive does not have any significant effect on the properties of bituminous concrete mixes. However Zycotherm additive tends to decrease viscosity of binder at a temperature above 100 ˚C which will result in lower mixing temperature without compromising the performance of bituminous binder. Rheological test on different binders has shown that Zycotherm additive has very less affect on rutting resistance of modified bitumen. It was finally concluded that best results were obtained from Limestone aggregates using 5% of SBS polymer and Zycotherm additive has no significant effect on mechanical properties of mix


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


2021 ◽  
Author(s):  
Maarten Soudijn ◽  
Sebastiaan van Rossum ◽  
Ane de Boer

<p>In this paper we present weight measurements of urban heavy traffic comparing two different Weigh In Motion (WIM) systems. One is a WIM-ROAD system using Lineas quartz pressure sensors in the road surface. The other is a WIM-BRIDGE system using optical fibre-based strain sensors which are applied under the bridge to the bottom fibre of a single span of the bridge deck. We have designed our tests to determine which system is most suited to Amsterdam. We put special focus on the accuracy that each system can achieve and have set up an extensive calibration program to determine this. Our ultimate goal is to draw up a realistic traffic load model for Amsterdam. This model would lead to a recommendation that can be used to re- examine the structural safety of existing historic bridges and quay walls, in addition to the current traffic load recommendations.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Xintian Hu ◽  
Liqian Wang ◽  
Zhiguo Zhang ◽  
Xue Chen

Energy consumption in optical access networks costs carriers substantial operational expense (OPEX) every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON), a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs) can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS) guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain.


2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Ebenezer Akin Oluwasola ◽  
Mohd Rosli Hainin ◽  
Mohd Khairul Idham ◽  
Modupe Abayomi

The failures of the flexible pavements are not only caused by harsh climatic conditions prevailing in most of the tropical countries but also due to increase in traffic. The ethylene vinyl acetate (EVA) modification of the bitumen can strengthen the properties of binders and also improve the quality of bitumen used for pavements construction. This paper reports the changes in physical and rheological properties of unaged 80-100 grade bitumen modified with different percentages of EVA and compared with the properties of PG 76 binder. The penetration, softening point and viscosity properties were studied. The rheological properties were measured using dynamic shear rheometer and the test was performed at temperatures ranging from 46 to 76 ⁰C at intervals of 6 ⁰C. It was noted that, after modification, the properties of binders had improved. The results show that 5% EVA content by weight in modified binder is adequate in terms of physical and rheological properties studied. In addition, the properties of 5% EVA modified 80-100 grade bitumen are similar to PG 76 binder.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5056 ◽  
Author(s):  
Lu ◽  
Ma ◽  
Liu

With the steadily growing of global transportation market, the traffic load has increased dramatically over the past decades, which may develop into a risk source for existing bridges. The simultaneous presence of heavy trucks that are random in nature governs the serviceability limit for large bridges. This study investigated probabilistic traffic load effects on large bridges under actual heavy traffic load. Initially, critical stochastic traffic loading scenarios were simulated based on millions of traffic monitoring data in a highway bridge in China. A methodology of extrapolating maximum traffic load effects was presented based on the level-crossing theory. The effectiveness of the proposed method was demonstrated by probabilistic deflection investigation of a suspension bridge. Influence of traffic density variation and overloading control on the maximum deflection was investigated as recommendations for designers and managers. The numerical results show that the congested traffic mostly governs the critical traffic load effects on large bridges. Traffic growth results in higher maximum deformations and probabilities of failure of the bridge in its lifetime. Since the critical loading scenario contains multi-types of overloaded trucks, an effective overloading control measure has a remarkable influence on the lifetime maximum deflection. The stochastic traffic model and corresponding computational framework is expected to be developed to more types of bridges.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jingsong Shan ◽  
Hongmei Shao ◽  
Qiuzhong Li ◽  
Peili Sun

Two kinds of asphalt pavement with thick asphalt layers were used to construct two samples. In structure I, a semirigid base and graded crushed stone subbase were used. In structure II, a granular base and semirigid subbase layer were used. Responses of the two structures under traffic loads were measured using optical fiber sensors, and the differences between theoretical model results and field measurements were analyzed. Field measurements show that vertical compressive stress in structure I is larger than that in structure II. The maximum tensile strain of the asphalt layer is located at the bottom of the AC-25C layer in structure I and at the bottom of the AC-25F layer in structure II. The latter is significantly larger than the former, indicating the possibility of fatigue cracking induced by traffic load is higher in structure II. The measured tensile horizontal strain at the bottom of the semirigid layer is relatively low (<30εμ) in both structure I and structure II. In theoretical model, static modulus, dynamic modulus, and interface bonding ability are considered and theoretical responses are calculated. There are significant differences between the theoretical results and field test data. In the theoretic model, the material properties of layers and bonding status of adjacent layers all influence the results. In order to reduce the difference between the calculated and measured results, numerous material tests and field tests should be carried out.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Lian-sheng Gao ◽  
Han-cheng Dan ◽  
Liang Li

This paper establishes the equivalent relationships between the half-sinusoidal load, triangular load, vertical stepwise load, and moving traffic load. The governing equation was established for analyzing the dynamic responses of pavement, and half-sinusoidal load, triangular load, and vertical stepwise load functions were transformed into Fourier series expressions. The partial differential governing equations were simplified as ordinary differential equations and the analytical solutions were obtained. Further, the solutions were validated through comparing the theoretical results with numerical simulated results. Calculation results revealed that, for unchanged load periods, increasing the amplitudes of the three loads by 1.06, 1.31, and 1.35 times can better simulate the moving traffic loads. For unchanged load function amplitudes, increasing the function periods by 1.07, 2.23, and 2.1 times (for half-sinusoidal, triangular, and vertical stepwise loads, resp.) can improve the simulation performance. The fatigue life of asphalt pavements under the moving traffic load agrees with that of the three load simulations, indicating that the fatigue life of asphalt pavements is only associated with the load amplitude but not the load patterns.


Sign in / Sign up

Export Citation Format

Share Document